Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Attarilar, Shokouh

  • Google
  • 2
  • 8
  • 33

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Conceptual Analysis on Severe Plastic Deformation Processes of Shape Memory Alloys: Mechanical Properties and Microstructure Characterization29citations
  • 2022Assessment of Severe Plastic Deformation Processes in Bulk and Nanostructured Metallic Glass4citations

Places of action

Chart of shared publication
Shamsborhan, Mahmoud
1 / 12 shared
Gode, Ceren
1 / 1 shared
Wang, Qudong
2 / 2 shared
Ebrahimi, Mahmoud
2 / 4 shared
Kandavalli, Sumanth Ratna
1 / 8 shared
Djavanroodi, Faramarz
1 / 4 shared
Singh, Dr. Shiv Prakash
1 / 1 shared
Wang, Liqiang
1 / 1 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Shamsborhan, Mahmoud
  • Gode, Ceren
  • Wang, Qudong
  • Ebrahimi, Mahmoud
  • Kandavalli, Sumanth Ratna
  • Djavanroodi, Faramarz
  • Singh, Dr. Shiv Prakash
  • Wang, Liqiang
OrganizationsLocationPeople

article

Conceptual Analysis on Severe Plastic Deformation Processes of Shape Memory Alloys: Mechanical Properties and Microstructure Characterization

  • Shamsborhan, Mahmoud
  • Attarilar, Shokouh
  • Gode, Ceren
  • Wang, Qudong
  • Ebrahimi, Mahmoud
  • Kandavalli, Sumanth Ratna
Abstract

Shape memory alloys (SMAs) are types of materials that can restore their original shape upon severe or quasi-plastic deformation, being exposed to specific external stimuli, including heating, electric current, magnetic field, etc. They are a category of functional materials that provides superelasticity as a significant material property. The roots of this unintentional discovery were in the 20th century, and later it attracted the attention of various industries, including aerospace, medical, mechanical, manufacturing industries, etc. Later developments mainly focused on improving the properties of these materials. One of the ways in which this is achieved is the application of intensive plastic strains on SMAs through severe plastic deformation (SPD) methods, leading to extreme grain refinement. Superelasticity is a key characteristic of SMAs and is known as the capacity of a polycrystalline material to display extremely high elongations before failure, in a typically isotropic way, with an approximate strain rate of 0.5. Utilization of SPD techniques can also affect and lead to superior superelasticity responses in SMAs. Several SPD methodologies have been introduced over the decades, to produce ultrafine-grained and even nanostructured materials, including constrained groove pressing, equal-channel angular pressing, high-speed high-pressure torsion, accumulative roll bonding, etc. This paper aims to present a clear view of the mechanical properties and microstructure evolution of shape memory alloys after processing by some SPD methods, and to show that SPD methods can be a great option for developing SMAs and expanding their industrial and technological applications.

Topics
  • impedance spectroscopy
  • polymer
  • grain
  • isotropic