People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ipatov, Mihail
Ministerio de Ciencia e Innovación
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Development of anisotropic Nd-Fe-B powder from isotropic gas atomized powdercitations
- 2024Comparison of the Magnetic and Structural Properties of MnFePSi Microwires and MnFePSi Bulk Alloycitations
- 2023Influence of the Geometrical Aspect Ratio on the Magneto-Structural Properties of Co2MnSi Microwirescitations
- 2023Preparation and Magneto-Structural Investigation of High-Ordered (L21 Structure) Co2MnGe Microwirescitations
- 2023Effects of thermal cycling on the thermal and magnetic response of Ni–Mn–Sn–Pd alloyscitations
- 2023Preparation and Magneto-Structural Investigation of High Ordered Structure in Co2MnGe Microwires
- 2023Effect of Annealing on the Magnetic Properties of Co2MnSi-Based Heusler Alloy Glass-Coated Microwirescitations
- 2023Effect of Annealing on the Magnetic Properties of Co2MnSi-Based Heusler Alloy Glass-Coated Microwirescitations
- 2023Enhancing the Squareness and Bi-Phase Magnetic Switching of Co2FeSi Microwires for Sensing Applicationcitations
- 2023Carbon-Doped Co2MnSi Heusler Alloy Microwires with Improved Thermal Characteristics of Magnetization for Multifunctional Applicationscitations
- 2022Preparation and Magneto-Structural Investigation of Nanocrystalline CoMn-Based Heusler Alloy Glass-Coated Microwirescitations
- 2022Fabrication and Magneto-Structural Properties of Co2-Based Heusler Alloy Glass-Coated Microwires with High Curie Temperaturecitations
- 2022Fabrication and Magneto-Structural Properties of Co2-Based Heusler Alloy Glass-Coated Microwires with High Curie Temperaturecitations
- 2022Magnetic properties of layered hybrid organic-Inorganic metal-halide perovskites: Transition metal, organic cation and perovskite phase pffectscitations
- 2022Magnetic Properties of Layered Hybrid Organic‐Inorganic Metal‐Halide Perovskites: Transition Metal, Organic Cation and Perovskite Phase Effectscitations
- 2022Anomalous magnetic behavior in half-metallic Heusler Co2FeSi alloy glass-coated microwires with high Curie temperaturecitations
- 2022Elucidation of the Strong Effect of the Annealing and the Magnetic Field on the Magnetic Properties of Ni2-Based Heusler Microwirescitations
- 2022Elucidation of the Strong Effect of the Annealing and the Magnetic Field on the Magnetic Properties of Ni2-Based Heusler Microwirescitations
- 2021Martensitic transformation, magnetic and magnetocaloric properties of Ni–Mn–Fe–Sn Heusler ribbonscitations
- 2020Martensitic Transformation, Thermal Analysis and Magnetocaloric Properties of Ni-Mn-Sn-Pd Alloyscitations
- 2020Martensitic Transformation, Thermal Analysis and Magnetocaloric Properties of Ni-Mn-Sn-Pd Alloyscitations
- 2020Coercivity and Magnetic Anisotropy of (Fe0.76Si0.09B0.10P0.05)97.5Nb2.0Cu0.5 Amorphous and Nanocrystalline Alloy Produced by Gas Atomization Processcitations
- 2018Magnetic Properties of Annealed Amorphous Fe72.5Si12.5B15 Alloy Obtained by Gas Atomization Techniquecitations
- 2014Annealing effect on the crystal structure and exchange bias in Heusler Ni45.5Mn43.0In11.5 alloy ribbonscitations
Places of action
Organizations | Location | People |
---|
article
Effect of Annealing on the Magnetic Properties of Co2MnSi-Based Heusler Alloy Glass-Coated Microwires
Abstract
<jats:p>In the current study, we concentrated on the influence of annealing on the magnetic behavior of Co2MnSi-based Heusler microwires. We set the annealing temperature at 1023 K for 2 h, as the sample did not show any significant changes in the magnetic properties at lower temperatures, while annealing at temperatures above 1023 K damages the glass coating. Strong in-plane magnetocrystalline anisotropy parallel to the microwire axis was evident in the magnetic behavior at room temperature for as-prepared and annealed samples. The coercivity of the annealed sample was four times higher than that of the as-prepared sample across a wide range of measuring temperatures. Both annealed and as-prepared samples exhibit quite stable coercivity behavior with temperature, which may have interesting applications. The an nealed sample did not exhibit magnetic saturation for M-H loops measured below 50 K. Sharp irreversible magnetic behavior has been detected for annealed samples at a blocking temperature of 220 K; at the same time, the blocking temperature for the as-prepared sample was 150 K. The strong internal mechanical stress induced during the fabrication of Co2MnSi microwires in addition to the internal stress relaxation caused by the annealing induced the onset of magnetic phases resulting in unusual and irreversible magnetic behavior.</jats:p>