Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Benatar, Avraham

  • Google
  • 1
  • 3
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Ultrasonic Joining of Additively Manufactured Metal-Composite Hybrid Joints6citations

Places of action

Chart of shared publication
Colvin, Nathaniel F.
1 / 1 shared
Sergio, T. Amancio-Filho
1 / 61 shared
Carvalho, W. S. De
1 / 10 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Colvin, Nathaniel F.
  • Sergio, T. Amancio-Filho
  • Carvalho, W. S. De
OrganizationsLocationPeople

article

Ultrasonic Joining of Additively Manufactured Metal-Composite Hybrid Joints

  • Benatar, Avraham
  • Colvin, Nathaniel F.
  • Sergio, T. Amancio-Filho
  • Carvalho, W. S. De
Abstract

<p>Ultrasonic Joining (U-Joining) is a novel friction-based joining technique that produces through-the-thickness reinforced hybrid joints between surface-structured metals and thermoplastics. The process feasibility has been successfully demonstrated to join metals and unreinforced or fiber-reinforced polymer parts by applying horizontal vibration. However, intense tool wear was observed for the explored combinations of materials, which could diminish the mechanical performance of the produced joints and hinder the process application. These investigations left an unexplored field regarding the application of different vibration modes, which could represent good solutions to minimize the intense tool wear reported. Therefore, the present study aims to explore the application of vertical vibration and to identify possible advantages and disadvantages of this variation. The case-study combination of additively manufactured 316L stainless steel and 20%-short-carbon-fiber reinforced poly-ether-ether-ketone was selected for this purpose. Initially, a set of optimized joining parameters was obtained for the vertical variation following a one-factor-at-a-time approach. In a previous study, the joining parameters were already optimized for the horizontal mode, and the results were used for comparison purposes. Single-lap shear joints were produced using both optimized modes, and the process monitoring indicated that joints produced using vertical vibration reached a lower joining energy input for a given joining time. The produced joints were tested, and joints produced with the horizontal variation achieved higher ultimate lap shear forces than the ones achieved by the vertical ones: 3.6 ± 0.3 kN and 1.6 ± 0.3 kN, respectively. Microstructural investigations at the fractured surfaces showed that this difference is due to insufficient frictional heat generation at the metal-composite interface when vertical vibration is applied. Therefore, the temperatures reached during the joining cycle are not enough to melt the polymer completely at the interface, preventing a complete surface wetting of the metal and reducing the micromechanical interlocking and adhesion bond between the parts, thereby diminishing the mechanical performance of the produced joints.</p>

Topics
  • impedance spectroscopy
  • surface
  • Carbon
  • stainless steel
  • melt
  • composite
  • ultrasonic
  • thermoplastic
  • ketone
  • joining