People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Singh, Ajit Pal
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Effect of heat treatments on microstructure and mechanical properties of low-cost Ti-6Al-4V alloy produced by thermo-mechanical powder consolidation route
Abstract
This paper investigates the level of properties enhancement achievable by heat-treating Ti-6Al-4V alloy produced from a blended powder mixture using a thermomechanical powder consolidation route involving warm uniaxial pressing and vacuum sintering followed by extrusion at super transus temperature (1150°C). The as-extruded material with a higher oxygen content of 0.55 wt.% was subjected to two different sub-transus annealing treatments: HT-A: 955°C/1h furnace cooling and HT-B: 925°C/4h-cooling @ 50°C/h to 760°C-FCfurnace cooling. Room temperature Charpy v-notch impact toughness tests and tensile tests were performed to ascertain the effect of microstructural changes during post-extrusion annealing treatments. After impact tests, analysis of microstructures and fracture surfaces of samples after impact tests were was carried out using optical microscopy and scanning electron microscopy. The as-extruded material displayed mean impact toughness of 4 J along with a yield strength of 956 MPa, an ultimate tensile strength of 22 1150 MPa, and an elongation to fracture of 2.4%. The annealing treatments gave a noticeable enhancement in the impact toughness (average values 5.3-6.3 J obtained) while maintaining a yield strength and ultimate tensile strength level of about 992 MPa and 1164-1181 MPa, respectively. Additionally, the level of change in ductility was limited for each sub-transus annealing treatment, and HT-A has given only a 30% increase compared to as-extruded material.