People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Siqueira, Renato
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
A Survey on the Oxidation Behavior of a Nickel-Based Alloy Used in Natural Gas Engine Exhaust Valve Seats
Abstract
<jats:p>This study reports the oxidation behavior of a Ni-based alloy used in the manufacture of valve seats for automotive engine exhaust systems. Isothermal thermogravimetric analyses were carried out at temperatures of 660, 740, 860, and 900 °C under an oxygen atmosphere for up to 1 h. At 660 and 740 °C, only one stage was observed during the whole time studied. At this stage, the oxide layer was formed mainly by NiO + Cr2O3, following a linear oxidation law with a rate constant (Kl) on the order of magnitude of 10−6 kg/m2s and an apparent activation energy (Ea) of ~47 kJ/mol. At 860 and 900 °C, an identical first stage was observed with a transition to a different stage. In the second stage, the oxidation layer was composed of Cr2O3, and a parabolic oxidation law was followed with a rate constant (Kp) on the order of 10−8 kg2/m4s and Ea of ~128 kJ/mol. Moreover, the Ni-based alloy formed a dense and compact oxide layer after oxidation, with no apparent cavities, pores, or microcracks. Characterization techniques such as Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDS), Fourier Transform Infrared Spectroscopy (FTIR), and Raman Spectroscopy were carried out to characterize the formed oxide layer.</jats:p>