People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Reijonen, Joni
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Effect of laser focal point position on porosity and melt pool geometry in laser powder bed fusion additive manufacturingcitations
- 2022High-coercivity NdFeB Printed Magnets With Laser Powder Bed Fusion Method
- 2022Single-Track Laser Scanning as a Method for Evaluating Printability: The Effect of Substrate Heat Treatment on Melt Pool Geometry and Cracking in Medium Carbon Tool Steelcitations
- 2022Laser Powder Bed Fusion Of High Carbon Tool Steels
- 2022Experimental and Calphad Methods for Evaluating Residual Stresses and Solid-State Shrinkage after Solidificationcitations
- 2022Opportunities Of Physics-Based Multi-Scale Modeling Tools In Assessing Intra-Grain Heterogeneities, Polycrystal Properties And Residual Stresses Of AM Metals
- 2021Micromechanical modeling approach to single track deformation, phase transformation and residual stress evolution during selective laser melting using crystal plasticitycitations
- 2021Cross-testing laser powder bed fusion production machines and powders: Variability in mechanical properties of heat-treated 316L stainless steelcitations
- 2021Cross-testing laser powder bed fusion production machines and powderscitations
- 2021Cross-testing laser powder bed fusion production machines and powders:Variability in mechanical properties of heat-treated 316L stainless steelcitations
- 2021Method for embedding components during additive manufacturing of metal parts
- 2020On the effect of shielding gas flow on porosity and melt pool geometry in laser powder bed fusion additive manufacturingcitations
- 2017Feasibility of selective laser melting process in manufacturing of digital spare parts
- 2017Circular Economy Concept In Additive Manufacturing
Places of action
Organizations | Location | People |
---|
article
Experimental and Calphad Methods for Evaluating Residual Stresses and Solid-State Shrinkage after Solidification
Abstract
Laser powder bed fusion is an additive manufacturing method that is based on melting and solidification of powder material. Due to the local heating above the melting point, thermal stresses are usually formed in the final part. Mitigation of residual stresses is usually assessed by laser scan strategies and not by alloy tailoring. In this paper a segregation-based residual stress formation mechanism is proposed and assessed computationally. Additionally, an experimental setup for rapid screening of residual stress formation in various alloys is proposed. The results should ease material development of metal alloys tailored for additive manufacturing by allowing the comparison of residual stress formation tendency (e.g., solid state shrinkage) between alloys. The proposed computational method is comparative in nature and forecasting absolute residual stress values would require known temperature dependent elastoplastic properties for the alloys as well as exact thermal history. The proposed experimental method is quantitative but its reliability depends on material properties such as yield strength.