Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Eliezer, Dan

  • Google
  • 3
  • 10
  • 55

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2022Hydrogen Trapping in Laser Powder Bed Fusion 316L Stainless Steel11citations
  • 2022Synthesis of Refractory High-Entropy Alloy WTaMoNbV by Powder Bed Fusion Process Using Mixed Elemental Alloying Powder30citations
  • 2010Nanoindentation measurements and mechanical testing of as-soldered and aged Sn-0.7Cu lead-free miniature joints14citations

Places of action

Chart of shared publication
Metalnikov, Polina
1 / 3 shared
Hamu, Guy Ben
1 / 1 shared
Leon, Avi
1 / 5 shared
Shirizly, Amnon
1 / 4 shared
Strokin, Evgeny
1 / 2 shared
Aghion, Eli
1 / 2 shared
Ron, Tomer
1 / 5 shared
Cohen, Sidney
1 / 29 shared
Rosenthal, Yair
1 / 1 shared
Stern, Ady
1 / 2 shared
Chart of publication period
2022
2010

Co-Authors (by relevance)

  • Metalnikov, Polina
  • Hamu, Guy Ben
  • Leon, Avi
  • Shirizly, Amnon
  • Strokin, Evgeny
  • Aghion, Eli
  • Ron, Tomer
  • Cohen, Sidney
  • Rosenthal, Yair
  • Stern, Ady
OrganizationsLocationPeople

article

Hydrogen Trapping in Laser Powder Bed Fusion 316L Stainless Steel

  • Metalnikov, Polina
  • Hamu, Guy Ben
  • Eliezer, Dan
Abstract

<jats:p>In this study, the hydrogen embrittlement (HE) of 316L stainless steel produced by laser powder bed fusion (L-PBF) was investigated by means of hydrogen trapping. The susceptibility of the material to HE is strongly connected to the interaction of hydrogen atoms with volumetric defects in the material. Trapping hydrogen in those defects affects its availability to critical locations where a hydrogen-induced crack can nucleate. Therefore, it is important to study the characteristics of hydrogen traps to better understand the behavior of the material in the hydrogen environment. The hydrogen was introduced into the material via electrochemical charging, and its interactions with various trapping sites were studied through thermal desorption spectroscopy (TDS). The obtained results were compared to conventionally produced 316L stainless steel, and the correlation between microstructure, characteristics of hydrogen traps, and susceptibility to HE is discussed.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • stainless steel
  • crack
  • selective laser melting
  • Hydrogen
  • susceptibility