Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Růžičková, Ludmila

  • Google
  • 1
  • 4
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Influence of Stress Relief Annealing Parameters on Mechanical Properties and Decomposition of Eutectic Si Network of L-PBF Additive Manufactured Alloy AlSi10Mg12citations

Places of action

Chart of shared publication
Sobotová, Jana
1 / 2 shared
Pelikán, Lukáš
1 / 1 shared
Šimota, Jan
1 / 1 shared
Beránek, Libor
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Sobotová, Jana
  • Pelikán, Lukáš
  • Šimota, Jan
  • Beránek, Libor
OrganizationsLocationPeople

article

Influence of Stress Relief Annealing Parameters on Mechanical Properties and Decomposition of Eutectic Si Network of L-PBF Additive Manufactured Alloy AlSi10Mg

  • Sobotová, Jana
  • Pelikán, Lukáš
  • Růžičková, Ludmila
  • Šimota, Jan
  • Beránek, Libor
Abstract

<jats:p>This paper evaluates the effect of stress-relieving heat treatment on the AlSi10Mg alloy prepared by additive manufacturing using the Laser Powder Bed Fusion (L-PBF) with print parameters: 370 W, 1400 m/s, and 50 μm. The as-built state and four different annealing modes (240 °C/2 h, 240 °C/6 h, 300 °C/2 h, and 300 °C/2 h/water-quenched) are investigated. To determine the effect of the annealing mode on the mechanical properties of the L-PBF AlSi10Mg alloy, heat-treated samples were compared with the as-built state and with each other. The mechanical properties of the samples were determined by tensile and hardness tests. The strength in the as-built state is 488 MPa, depending on the method of heat treatment, the strength values range from 296 MPa to 417 MPa, and the HV10 hardness values are in accordance with the measured strength values. Furthermore, the microstructure of the samples was investigated by scanning electron microscopy (SEM) analysis, which was then linked to the measured mechanical properties. The composition of the microstructure of the alloy and its influence on the mechanical properties were determined by energy dispersive spectroscopy (EDS) analysis. Furthermore, the differences between the individual heat treatments in comparison with the as-built state were analyzed and the phenomenon of decomposition of the silicon network after reaching specific temperatures was discussed and confirmed. The paper evaluates the effect of dwelling time on stress relief annealing. It was found that if annealing at intermediate temperatures of 240 and 300 °C is applied, changes in structure and mechanical properties are more temperature- than dwell-time-dependent.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • scanning electron microscopy
  • strength
  • hardness
  • selective laser melting
  • Silicon
  • annealing
  • Energy-dispersive X-ray spectroscopy
  • decomposition