People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lotfian, Saeid
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2023Low electric field induction in BaTiO3-epoxy nanocompositescitations
- 2023Low electric field induction in BaTiO3-epoxy nanocompositescitations
- 2023Effect of initial grain size on microstructure and mechanical properties of in situ hybrid aluminium nanocomposites fabricated by friction stir processingcitations
- 2023Low electric field induction in BaTiO 3 -epoxy nanocomposites
- 2023Bioactive and biodegradable polycaprolactone-based nanocomposite for bone repair applicationscitations
- 2022Development of an injectable shear-thinning nanocomposite hydrogel for cardiac tissue engineeringcitations
- 2022Assessment of mechanical and fatigue crack growth properties of wire + arc additively manufactured mild steel componentscitations
- 2022Mechanical stress measurement using phased array ultrasonic system
- 2022Mechanical Activation-Assisted Solid-State Aluminothermic Reduction of CuO Powders for In-Situ Copper Matrix Composite Fabricationcitations
- 2022Assessment of mechanical and fatigue crack growth properties of wire+arc additively manufactured mild steel componentscitations
- 2021Remanufacturing the AA5052 GTAW welds using friction stir processingcitations
- 2020Effect of multi-pass friction stir processing on textural evolution and grain boundary structure of Al-Fe3O4 systemcitations
- 2019Ultra-thin electrospun nanofibers for development of damage-tolerant composite laminatescitations
- 2019Development of damage tolerant composite laminates using ultra-thin interlaminar electrospun thermoplastic nanofibres
- 2019Towards the use of electrospun piezoelectric nanofibre layers for enabling in-situ measurement in high performance composite laminates
- 2018Electrospun piezoelectric polymer nanofiber layers for enabling in situ measurement in high-performance composite laminatescitations
- 2018Electrospun piezoelectric polymer nanofiber layers for enabling in situ measurement in high-performance composite laminatescitations
- 2018Development of damage tolerant composite laminates using ultra-thin interlaminar electrospun thermoplastic nanofibres
- 2018Towards the use of electrospun piezoelectric nanofibre layers for enabling in-situ measurement in high performance composite laminates
- 2015High temperature nanoindentation response of RTM6 epoxy resin at different strain ratescitations
- 2014Effect of layer thickness on the high temperature mechanical properties of Al/SiC nanolaminatescitations
- 2012High-temperature nanoindentation behavior of Al/SiC multilayerscitations
Places of action
Organizations | Location | People |
---|
article
Mechanical Activation-Assisted Solid-State Aluminothermic Reduction of CuO Powders for In-Situ Copper Matrix Composite Fabrication
Abstract
<jats:p>In this study, combustion synthesis involving mechanical milling and subsequent sintering process was utilised to fabricate Cu/AlxCuy/Al2O3 in-situ composite through the aluminothermic reduction of CuO powders. First, CuO and Al powders were mixed, and ball milled for 30–150 min to facilitate self-propagating high-temperature synthesis (SHS). Then, mechanically activated Al-CuO powders were mixed with elemental Cu powders and experienced subsequent cold compaction and sintering processes. The reactions during synthesis were studied utilising differential thermal analysis (DTA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Densification and hardness of green and sintered bodies were also obtained. The results indicated that despite the negative free energy of the aluminothermic reaction, an initial activation energy supply is required, and mixed Al-CuO powders did not show significant progress in the combustion synthesis method. The aluminothermic reaction became probable whenever the activation energy was entirely provided by high-energy ball milling or by the sintering of ball-milled Al-CuO mixed powders. DTA results showed that the aluminothermic reaction temperature of Al-CuO decreased with milling times, whereas after 150 min of ball milling, the reaction was completed. XRD patterns revealed that the formation of Al2Cu and Al2O3 reinforcing phases resulted from CuO reduction with Al. Al4Cu9, Cu solid solution, and Al oxide phases were observed in sintered samples. The relative density of the samples was reduced compared to the green compacted parts due to the nature of the Cu-Al alloy and the occurrence of the swelling phenomenon. The hardness results indicated that in-situ formation of reinforcing phases in samples that experienced thermally assisted thermite reaction yielded superior hardness.</jats:p>