Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Uksusnikov, Alexey N.

  • Google
  • 1
  • 4
  • 18

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Design and Development of High-Strength and Ductile Ternary and Multicomponent Eutectoid Cu-Based Shape Memory Alloys: Problems and Perspectives18citations

Places of action

Chart of shared publication
Svirid, Alexey E.
1 / 3 shared
Ustyugov, Yurii M.
1 / 3 shared
Pushin, Vladimir G.
1 / 1 shared
Kuranova, Nataliya N.
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Svirid, Alexey E.
  • Ustyugov, Yurii M.
  • Pushin, Vladimir G.
  • Kuranova, Nataliya N.
OrganizationsLocationPeople

article

Design and Development of High-Strength and Ductile Ternary and Multicomponent Eutectoid Cu-Based Shape Memory Alloys: Problems and Perspectives

  • Svirid, Alexey E.
  • Uksusnikov, Alexey N.
  • Ustyugov, Yurii M.
  • Pushin, Vladimir G.
  • Kuranova, Nataliya N.
Abstract

<jats:p>An overview is presented on the structural and phase transformations and physical and mechanical properties of those multicomponent copper-based shape memory alloys which demonstrate attractive commercial potential due to their low cost, good shape memory characteristics, ease of fabrication, and excellent heat and electrical conductivity. However, their applications are very limited due to brittleness, reduced thermal stability, and mechanical strength—properties which are closely related to the microstructural features of these alloys. The efforts of the authors of this article were aimed at obtaining a favorable microstructure of alloys using new alternative methods of thermal and thermomechanical treatments. For the first time, the cyclic martensitic transformations during repeated quenching, methods of uniaxial megaplastic compression, or torsion under high pressure were successfully applied for radical size refinement of the grain structure of polycrystalline Cu-Al-Ni-based alloys with shape memory. The design of the ultra- and fine-grained structure by different methods determined (i) an unusual combination of strength and plasticity of these initially brittle alloys, both under controlled heat or hot compression or stretching, and during subsequent tensile tests at room temperature, and, as a consequence, (ii) highly reversible shape memory effects.</jats:p>

Topics
  • impedance spectroscopy
  • grain
  • phase
  • strength
  • copper
  • plasticity
  • electrical conductivity
  • quenching