People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dzugan, Jan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2023Effect of Heat Treatment on Creep Deformation and Fracture Properties for a Coarse-Grained Inconel 718 Manufactured by Directed Energy Depositioncitations
- 2022Miniature mechanical testing of LMD-fabricated compositionally & microstructurally graded γ titanium aluminidescitations
- 2022Damage Evolution Simulations via a Coupled Crystal Plasticity and Cohesive Zone Model for Additively Manufactured Austenitic SS 316L DED Componentscitations
- 2022Enhanced Spring Steel’s Strength Using Strain Assisted Temperingcitations
- 2020Strain Hardening in an AZ31 Alloy Submitted to Rotary Swagingcitations
- 2020Magnesium Reinforced with Inconel 718 Particles Prepared Ex Situ—Microstructure and Propertiescitations
- 2010Crack initiation determination for Charpy size specimens
Places of action
Organizations | Location | People |
---|
article
Damage Evolution Simulations via a Coupled Crystal Plasticity and Cohesive Zone Model for Additively Manufactured Austenitic SS 316L DED Components
Abstract
<jats:p>This study presents a microstructural model applicable to additively manufactured (AM) austenitic SS 316L components fabricated via a direct energy deposition (DED) process. The model is primarily intended to give an understanding of the effect of microscale and mesoscale features, such as grains and melt pool sizes, on the mechanical properties of manufactured components. Based on experimental observations, initial assumptions for the numerical model regarding grain size and melt pool dimensions were considered. Experimental observations based on miniature-sized 316L stainless steel DED-fabricated samples were carried out to shed light on the deformation mechanism of FCC materials at the grain scale. Furthermore, the dependency of latent strain hardening parameters based on the Bassani–Wu hardening model for a single crystal scale is investigated, where the Voronoi tessellation method and probability theory are utilized for the definition of the grain distribution. A hierarchical polycrystalline modeling methodology based on a representative volume element (RVE) with the realistic impact of grain boundaries was adopted for fracture assessment of the AM parts. To qualify the validity of process–structure–property relationships, cohesive zone damage surfaces were used between melt pool boundaries as the predefined initial cracks and the performance of the model is validated based on the experimental observations.</jats:p>