Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Giedenbacher, Jochen

  • Google
  • 1
  • 7
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Design, Characterisation and Numerical Investigations of Additively Manufactured H10 Hybrid-Forging Dies with Conformal Cooling Channels4citations

Places of action

Chart of shared publication
Wester, Hendrik
1 / 32 shared
Behrens, Bernd-Arno
1 / 119 shared
Siring, Janina
1 / 3 shared
Rosenbusch, Daniel
1 / 6 shared
Siegmund, Martin
1 / 3 shared
Peddinghaus, Julius
1 / 20 shared
Huskic, Aziz
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Wester, Hendrik
  • Behrens, Bernd-Arno
  • Siring, Janina
  • Rosenbusch, Daniel
  • Siegmund, Martin
  • Peddinghaus, Julius
  • Huskic, Aziz
OrganizationsLocationPeople

article

Design, Characterisation and Numerical Investigations of Additively Manufactured H10 Hybrid-Forging Dies with Conformal Cooling Channels

  • Giedenbacher, Jochen
  • Wester, Hendrik
  • Behrens, Bernd-Arno
  • Siring, Janina
  • Rosenbusch, Daniel
  • Siegmund, Martin
  • Peddinghaus, Julius
  • Huskic, Aziz
Abstract

<jats:p>Internal die cooling during forging can reduce thermal loads, counteracting surface softening, plastic deformation and abrasive die wear. Additive manufacturing has great potential for producing complex geometries of the internal cooling channels. In this study, hybrid forging dies were developed combining conventional manufacturing processes and laser powder bed fusion (L-PBF) achieving conformal cooling channels. A characterisation of the used hot-work tool steel’s AISI H10 powder material was carried out in order to determine suitable parameters for L-PBF processing and heat treatment parameters. Additionally, the mechanical properties of L-PBF-processed AISI H10 specimens were investigated. Furthermore, the influence of different internal cooling channels regarding a possible structural weakening of the die were analysed by means of a finite element method (FEM) applied to a hot-forging process. The numerical results indicated that the developed forging dies withstood the mechanical loads during a forging process. However, during the investigation a large dependency between the resulting stresses and the chosen parameters were observed. By choosing the best combination of parameters, a reduction of the equivalent stress by 1000 MPa can be achieved. Finally, a prototype of the hybrid-forging dies featuring the most promising cooling channel geometry was manufactured.</jats:p>

Topics
  • surface
  • polymer
  • selective laser melting
  • forging
  • hot-work steel