People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Patil, Arun
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024Study on Nanomaterials Coated Natural Coir Fibers as Crack Arrestor in Cement Compositecitations
- 2023Asymmetric/Symmetric Glass-Fibre-Filled Polyamide 66 Gears—A Systematic Fatigue Life Studycitations
- 2022Natural Fiber and Biodegradable Plastic Composite
- 2022A Tribological Study on the Effect of Reinforcing SiC and Al2O3 in Al7075: Applications for Spur Gearscitations
Places of action
Organizations | Location | People |
---|
article
A Tribological Study on the Effect of Reinforcing SiC and Al2O3 in Al7075: Applications for Spur Gears
Abstract
<jats:p>In today’s world, efficiency and margin of safety are prime considerations for any applications. To address such parameters in aerospace or high-tech consumer products, there are still limitations in terms of capabilities from a material perspective. Aluminium 7075 is predominantly used as a combination material in these applications, but it has many drawbacks such as early wear/friction, low fatigue life cycle, high weight ratios, high deformation and stresses. To overcome these key issues, many reinforcements have been used to date. However, the results are not so convincing with respect to tribological applications, and the aforementioned issues still persist. In the current work, a novel hybrid composite comprising Aluminium 7075 as substrate and the reinforcement of silicon carbide and aluminium oxide at varying combinations of 3 to 9% in steps of 3% and a constant percentage of 5% were added, respectively. The exhaustive work focuses on extracting the mechanical, tribological and physical properties of a hybrid composite. Furthermore, a microcharacterisation study of these combinations was carried out using FE-SEM and EDX. In a continuation to this simulation, a study was performed using ANSYS Workbench to identify a suitable gear application with real-time loading conditions. The observed results show a tensile strength of 366 MPa for 6%SiC, hardness of 93 VHN and wear rate of 0.00025 mm3/Nm for the 9%SiC combination.</jats:p>