People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nguyen-Minh, Tuan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2022Analysis of ESAFORM 2021 cup drawing benchmark of an Al alloy, critical factors for accuracy and efficiency of FE simulationscitations
- 2022Analysis of ESAFORM 2021 cup drawing benchmark of an Al alloy, critical factors for accuracy and efficiency of FE simulationscitations
- 2022Analysis of ESAFORM 2021 cup drawing benchmark of an Al alloy, critical factors for accuracy and efficiency of FE simulations.citations
- 2022The Role of Parent Phase Topology in Double Young–Kurdjumow–Sachs Variant Selection during Phase Transformation in Low-Carbon Steelscitations
- 2021Microstructure, Anisotropy and Formability Evolution of an Annealed AISI 430 Stainless Steel Sheetcitations
- 2015Prediction of deformation textures in asymmetric rolling of aluminium alloys
- 2012Texture Control in Steel and Aluminium Alloys by Rolling and Recrystallization in Non-Conventional Sheet Manufacturingcitations
Places of action
Organizations | Location | People |
---|
article
The Role of Parent Phase Topology in Double Young–Kurdjumow–Sachs Variant Selection during Phase Transformation in Low-Carbon Steels
Abstract
The present paper investigates the role of parent phase topology on a crystallographic variant selection rule. This rule assumes that product phase nuclei appear at certain grain boundaries in the parent structure, such that a specific crystallographic orientation relationship is observed with both parent grains at either side of the grain boundary. The specific crystallographic orientation correspondence considered here is the Young–Kurdjumow–Sachs (YKS) orientation relationship <112>90 ◦ (which exhibits 24 symmetrical equivalents). The aforementioned relationship is characteristic of phase transformations in low-carbon steel grades. It is shown that, for different parent phase textures, ~20% of the grain boundaries comply with the double YKS condition allowing for a tolerance of 5 ◦ , ignoring the presence of topology in the parent phase microstructure. The presented model allows for connecting the presence of a specific parent phase topology with the condition of the double YKS variant selection rule in a number of practical cases: (i) for hot rolled Ti–Interstitial Free (IF) steel with and without Mn addition, (ii) for cold rolled IF steel exhibiting very strong texture memory after forward and reverse α ⇋ γ phase transformation and (iii) for a martensitic transformation in a Fe–8.5% Cr steel. It is shown that the double YKS variant selection criterion may explain several specific features of the observed transformation textures, while assuming a non-correlated arbitrary pair topology of the parent austenite structure (implying that for N parent orientations N/2 pairs are selected in an arbitrary manner). ; Team Kevin Rossi