People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Turk, Christoph
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Effect of intercritical annealing on the microstructure and mechanical properties of a PH 13-8 Mo maraging steelcitations
- 2024Multiscale in-situ observations of the micro- and nanostructure of a PH 13-8 Mo maraging steel during austenitizationcitations
- 2022Optimization of the post-process heat treatment strategy for a Near-α Titanium base alloy produced by laser powder bed fusioncitations
- 2022Potential Causes for Cracking of a Laser Powder Bed Fused Carbon-free FeCoMo Alloycitations
- 2022Cracking mechanism in a laser powder bed fused cold-work tool steelcitations
- 2022Cracking mechanism in a laser powder bed fused cold-work tool steel: The role of residual stresses, microstructure and local elemental concentrationscitations
- 2022Local microstructural evolution and the role of residual stresses in the phase stability of a laser powder bed fused cold-work tool steelcitations
- 2022Local microstructural evolution and the role of residual stresses in the phase stability of a laser powder bed fused cold-work tool steelcitations
- 2022Microstructure Evolution of a New Precipitation-Strengthened Fe–Al–Ni–Ti Alloy down to Atomic Scalecitations
- 2022Formation and evolution of precipitates in an additively manufactured near-α titanium base alloycitations
- 2022Processability and cracking behaviour of novel high-alloyed tool steels processed by laser powder bed fusioncitations
- 2021Atom Probe Tomography of the Oxide Layer of an Austenitic Stainless CrMnN-Steelcitations
- 2021Influence of thermomechanical fatigue loading conditions on the nanostructure of secondary hardening steelscitations
- 2020Defects in a laser powder bed fused tool steelcitations
- 2020Determination of Martensite Start Temperature of High‐Speed Steels Based on Thermodynamic Calculationscitations
- 2019Microstructural evolution of a dual hardening steel during heat treatmentcitations
- 2019Thermomechanical fatigue testing of dual hardening tool steelscitations
- 2015Boron grain boundary segregation in a heat treatable steelcitations
Places of action
Organizations | Location | People |
---|
article
Microstructure Evolution of a New Precipitation-Strengthened Fe–Al–Ni–Ti Alloy down to Atomic Scale
Abstract
Ferritic materials consisting of a disordered matrix and a significant volume fraction of ordered intermetallic precipitates have recently gained attention due to their favorable properties regarding high-temperature applicability. Alloys strengthened by Heusler-type precipitates turned out to show promising properties at elevated temperatures, e.g., creep resistance. The present work aims at developing a fundamental understanding of the microstructure of an alloy with a nominal composition of 60Fe–20Al–10Ni–10Ti (in at. %). In order to determine the microstructural evolution, prevailing phases and corresponding phase transformation temperatures are investigated. Differential thermal analysis, high-temperature X-ray diffraction, and special heat treatments were performed. The final microstructures are characterized by means of scanning and transmission electron microscopy along with hardness measurements. Atom probe tomography conducted on alloys of selected heat-treated conditions allows for evaluating the chemical composition and spatial arrangement of the constituent phases. All investigated sample conditions showed microstructures consisting of two phases with crystal structures A2 and L21. The L21 precipitates grew within a continuous A2 matrix. Due to a rather small lattice mismatch, matrix–precipitate interfaces are either coherent or semicoherent depending on the cooling condition after heat treatment.