People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Barilyuk, Danil
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Novel Zr-Rich Alloys of Ternary Ti-Zr-Nb System with Large Superelastic Recovery Strain
Abstract
<jats:p>Four novel superelastic alloys, Ti-41Zr-12Nb, Ti-42Zr-11Nb, Ti-43Zr-10Nb, Ti-44Zr-10Nb (at.%), were obtained and studied in terms of their microstructure and mechanical properties. The obtained alloys were subjected to thermomechanical treatment, providing alloys with a pronounced superelastic behavior. Materials phase composition and microstructure were studied using XRD and SEM methods. Based on the XRD results, maximum lattice strains in the [011]β direction were calculated as 5.9%, 6.3%, 7.5%, and 7.2% for Ti-41Zr-12Nb, Ti-42Zr-11Nb, Ti-43Zr-10Nb, and Ti-44Zr-10Nb alloys, respectively. Mechanical properties of the thermomechanically-treated alloys were studied by Vickers microhardness testing, static tensile testing, and superelastic mechanical cycling. The maximum superelastic recovery strains attained at room temperature was 3.7%, 1.9%, 3.2%, and 3.0% for the Ti-41Zr-12Nb, Ti-42Zr-11Nb, Ti-43Zr-10Nb, and Ti-44Zr-10Nb alloys, respectively. Ti-41Zr-12Nb alloy demonstrated the highest ductility, with relative elongation to failure of over 20%, combined with the total recovery strain of more than 6%. Obtained results indicate that Ti-41Zr-12Nb is one the most promising alloys of the Ti-Zr-Nb system, with quite perfect superelastic behavior at room temperature.</jats:p>