People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hein, Maxwell
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024Laser powder bed fusion and post-treatments of (+) and metastable titanium alloys with adapted biocompatibility and improved mechanical performance ; Pulverbettbasiertes selektives Laserstrahlschmelzen und Nachbehandlung von (+) und metastabilen Titan-Legierungen mit angepasster Biokompatibilität und verbesserten mechanischer Performance
- 2022Low Cycle Fatigue Performance of Additively Processed and Heat-Treated Ti-6Al-7Nb Alloy for Biomedical Applicationscitations
- 2022Low cycle fatigue performance of additively processed and heat-treated Ti-6Al-7Nb alloy for biomedical applicationscitations
- 2021Tribo-mechanical properties and biocompatibility of Ag-containing amorphous carbon films deposited onto Ti6Al4Vcitations
Places of action
Organizations | Location | People |
---|
article
Low Cycle Fatigue Performance of Additively Processed and Heat-Treated Ti-6Al-7Nb Alloy for Biomedical Applications
Abstract
<jats:p>In biomedical engineering, laser powder bed fusion is an advanced manufacturing technology, which enables, for example, the production of patient-customized implants with complex geometries. Ti-6Al-7Nb shows promising improvements, especially regarding biocompatibility, compared with other titanium alloys. The biocompatible features are investigated employing cytocompatibility and antibacterial examinations on Al2O3-blasted and untreated surfaces. The mechanical properties of additively manufactured Ti-6Al-7Nb are evaluated in as-built and heat-treated conditions. Recrystallization annealing (925 °C for 4 h), β annealing (1050 °C for 2 h), as well as stress relieving (600 °C for 4 h) are applied. For microstructural investigation, scanning and transmission electron microscopy are performed. The different microstructures and the mechanical properties are compared. Mechanical behavior is determined based on quasi-static tensile tests and strain-controlled low cycle fatigue tests with total strain amplitudes εA of 0.35%, 0.5%, and 0.8%. The as-built and stress-relieved conditions meet the mechanical demands for the tensile properties of the international standard ISO 5832-11. Based on the Coffin–Manson–Basquin relation, fatigue strength and ductility coefficients, as well as exponents, are determined to examine fatigue life for the different conditions. The stress-relieved condition exhibits, overall, the best properties regarding monotonic tensile and cyclic fatigue behavior.</jats:p>