People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rybalchenko, Georgy
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023Biocompatibility and Degradation of Fe-Mn-5Si Alloy after Equal-Channel Angular Pressing: In Vitro and In Vivo Studycitations
- 2023Effects of C Doping on the Structure and Functional Characteristics of Fe-Mn Alloys after Equal Channel Angular Pressing
- 2023Effect of Rotary Swaging on Mechanical and Corrosion Properties of Zn-1%Mg and Zn-1%Mg-0.1%Ca Alloyscitations
- 2023Effect of Rotary Swaging on Mechanical and Operational Properties of Zn–1%Mg and Zn–1%Mg–0.1%Ca Alloys
- 2023Effect of Rotary Swaging on Mechanical and Operational Properties of Zn–1%Mg and Zn–1%Mg–0.1%Ca Alloyscitations
- 2023Effect of Samarium on the Properties of Hot-Extruded Mg–Y–Gd–Zr Alloyscitations
- 2023Bioactivity Features of a Zn-1%Mg-0.1%Dy Alloy Strengthened by Equal-Channel Angular Pressingcitations
- 2022Effect of High-Pressure Torsion on Microstructure, Mechanical and Operational Properties of Zn-1%Mg-0.1%Ca Alloycitations
- 2022Effect of Rotary Swaging on the Structure, Mechanical Characteristics and Aging Behavior of Cu-0.5%Cr-0.08%Zr Alloycitations
- 2022Structure, Biodegradation, and In Vitro Bioactivity of Zn–1%Mg Alloy Strengthened by High-Pressure Torsioncitations
- 2022Modification of Biocorrosion and Cellular Response of Magnesium Alloy WE43 by Multiaxial Deformationcitations
Places of action
Organizations | Location | People |
---|
article
Modification of Biocorrosion and Cellular Response of Magnesium Alloy WE43 by Multiaxial Deformation
Abstract
<jats:p>The study shows that multiaxial deformation (MAD) treatment leads to grain refinement in magnesium alloy WE43. Compared to the initial state, the MAD-processed alloy exhibited smoother biocorrosion dynamics in a fetal bovine serum and in a complete cell growth medium. Examination by microCT demonstrated retardation of the decline in the alloy volume and the Hounsfield unit values. An attendant reduction in the rate of accumulation of the biodegradation products in the immersion medium, a less pronounced alkalization, and inhibited sedimentation of biodegradation products on the surface of the alloy were observed after MAD. These effects were accompanied with an increase in the osteogenic mesenchymal stromal cell viability on the alloy surface and in a medium containing their extracts. It is expected that the more orderly dynamics of biodegradation of the WE43 alloy after MAD and the stimulation of cell colonization will effectively promote stable osteosynthesis, making repeat implant extraction surgeries unnecessary.</jats:p>