People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Estrin, Yuri
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2024The “third body” approach to joining of metals by simple shear under pressure
- 2023Impact of severe plastic deformation on kinetics and thermodynamics of hydrogen storage in magnesium and its alloyscitations
- 2022Hydrogen storage properties of as-synthesized and severely deformed magnesium – multiwall carbon nanotubes compositecitations
- 2022Modification of Biocorrosion and Cellular Response of Magnesium Alloy WE43 by Multiaxial Deformationcitations
- 2021Dynamic strain aging mechanisms in a metastable austenitic stainless steelcitations
- 2021The Earth's Lithosphere Inspires Materials Designcitations
- 2021Isotropic and kinematic hardening of a high entropy alloycitations
- 2021Architecturing materials at mesoscale: some current trendscitations
- 2021Twinning engineering of high-entropy alloys: An exercise in process optimization and modelingcitations
- 2021Twinning Engineering of a CoCrFeMnNi High-Entropy Alloycitations
- 2020Nanotomographic evaluation of precipitate structure evolution in a Mg–Zn–Zr alloy during plastic deformationcitations
- 2017Twist Extrusion as a Potent Tool for Obtaining Advanced Engineering Materials: A Reviewcitations
- 2017Microstructure, crystallographic texture and mechanical behaviour of friction stir processed Mg-Zn-Ca-Zr alloy ZKX50citations
- 2017Gradient Structures in Thin-Walled Metallic Tubes Produced by Continuous High Pressure Tube Shearing Processcitations
- 2016Fourth-order strain-gradient phase mixture model for nanocrystalline fcc materialscitations
- 2016Towards microstructure-cytocompatibility relationship in ultralight Mg-4Li-1Ca (LX41) alloy for degradable implant applicationscitations
- 2016Enhanced Mechanical Performance of Bio-Inspired Hybrid Structures Utilising Topological Interlocking Geometrycitations
- 2016Producing bulk ultrafine-grained materials by severe plastic deformation: ten years latercitations
- 2014Particle evolution in Mg-Zn-Zr alloy processed by integrated extrusion and equal channel angular pressingcitations
- 2013Effect of grain size on the mechanisms of plastic deformation in wrought Mg-Zn-Zr alloy revealed by acoustic emission measurementscitations
- 2012Improvement of fatigue strength of a Mg-Zn-Zr alloy by integrated extrusion and equal-channel angular pressingcitations
- 2009Effect of ultrafine-grained titanium surfaces on adhesion of bacteriacitations
- 2008Martensitic transformations and functional stability in ultra-fine grained NiTi shape memory alloys
- 2008Enhanced superplasticity of magnesium alloy AZ31 obtained through equal-channel angular pressing with back-pressurecitations
- 2007On the contribution of carbides and micrograin boundaries to the creep strength of tempered martensite ferritic steels
Places of action
Organizations | Location | People |
---|
article
Modification of Biocorrosion and Cellular Response of Magnesium Alloy WE43 by Multiaxial Deformation
Abstract
<jats:p>The study shows that multiaxial deformation (MAD) treatment leads to grain refinement in magnesium alloy WE43. Compared to the initial state, the MAD-processed alloy exhibited smoother biocorrosion dynamics in a fetal bovine serum and in a complete cell growth medium. Examination by microCT demonstrated retardation of the decline in the alloy volume and the Hounsfield unit values. An attendant reduction in the rate of accumulation of the biodegradation products in the immersion medium, a less pronounced alkalization, and inhibited sedimentation of biodegradation products on the surface of the alloy were observed after MAD. These effects were accompanied with an increase in the osteogenic mesenchymal stromal cell viability on the alloy surface and in a medium containing their extracts. It is expected that the more orderly dynamics of biodegradation of the WE43 alloy after MAD and the stimulation of cell colonization will effectively promote stable osteosynthesis, making repeat implant extraction surgeries unnecessary.</jats:p>