Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kalashnikov, Mark

  • Google
  • 2
  • 3
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Influence of the Structural-Phase State of a Copper Substrate upon Modification with Titanium Ions on the Thermal Cyclic Resistance of a Coating Based on Zr-Y-O1citations
  • 2020Effect of Surface Modification of a Titanium Alloy by Copper Ions on the Structure and Properties of the Substrate-Coating Composition2citations

Places of action

Chart of shared publication
Bozhko, Irina
2 / 2 shared
Fedorischeva, Marina
2 / 2 shared
Perevalova, Olga
1 / 2 shared
Chart of publication period
2021
2020

Co-Authors (by relevance)

  • Bozhko, Irina
  • Fedorischeva, Marina
  • Perevalova, Olga
OrganizationsLocationPeople

article

Influence of the Structural-Phase State of a Copper Substrate upon Modification with Titanium Ions on the Thermal Cyclic Resistance of a Coating Based on Zr-Y-O

  • Kalashnikov, Mark
  • Bozhko, Irina
  • Fedorischeva, Marina
Abstract

<jats:p>The results of investigation of the surface of a copper substrate modified with titanium ions are presented. The phase composition, the structure, and the morphology of the surface of the copper alloy modified by titanium ions have been investigated by X-ray, SEM, and TEM. It has been established that there are the intermetallic phases of the Cu-Ti equilibrium diagram in the surface layer during the treatment of copper by the titanium ions. A multilevel micro- and nanoporous structure is formed in the modified layer. It has been established that the structure-phase state and morphology of the surface layers of copper directly effects on the thermocycler resistance and adhesion of the Zr-Y-O coating. The thermocyclic resistance of the Zr-Y-O coating increases by an order of magnitude, the adhesion to the substrate is 2 times if the substrate surface is treated with titanium ions for 6 min.</jats:p>

Topics
  • impedance spectroscopy
  • morphology
  • surface
  • phase
  • scanning electron microscopy
  • transmission electron microscopy
  • copper
  • titanium
  • intermetallic
  • copper alloy