People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wiszniewski, Lukas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
- 2022Optimization of a Pyrometallurgical Process to Efficiently Recover Valuable Metals from Commercially Used Lithium-Ion Battery Cathode Materials LCO, NCA, NMC622, and LFPcitations
- 2021Investigation of Potential Recovery Rates of Nickel, Manganese, Cobalt, and Particularly Lithium from NMC-Type Cathode Materials (LiNixMnyCozO2) by Carbo-Thermal Reduction in an Inductively Heated Carbon Bed Reactorcitations
Places of action
Organizations | Location | People |
---|
article
Investigation of Potential Recovery Rates of Nickel, Manganese, Cobalt, and Particularly Lithium from NMC-Type Cathode Materials (LiNixMnyCozO2) by Carbo-Thermal Reduction in an Inductively Heated Carbon Bed Reactor
Abstract
<p>Within the e-mobility sector, which represents a major driver of the development of the over-all lithium-ion battery market, batteries with nickel-manganese-cobalt (NMC) cathode chemistries are currently gaining ground. This work is specifically dedicated to this NMC battery type and investigates achievable recovery rates of the valuable materials contained when applying an uncon-ventional, pyrometallurgical reactor concept. For this purpose, the currently most prevalent NMC modifications (5-3-2, 6-2-2, and 8-1-1) with carbon addition were analyzed using thermogravimetric analysis and differential scanning calorimetry, and treated in a lab-scale application of the mentioned reactor principle. It was shown that the reactor concept achieves high recovery rates for nickel, cobalt, and manganese of well above 80%. For lithium, which is usually oxidized and slagged, the transfer coefficient into the slag phase was less than 10% in every experimental trial. Instead, it was possible to remove the vast amount of it via a gas phase, which could potentially open up new paths regarding metal recovery from spent lithium-ion batteries.</p>