People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Roche, Virginie
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (33/33 displayed)
- 2024The study of passive film's resistivity distribution to crystalline Fe-based pseudo high entropy alloys: The use of measurement model and Cole-Cole regressioncitations
- 2024The study of passive film's resistivity distribution to crystalline Fe-based pseudo high entropy alloys: The use of measurement model and Cole-Cole regressioncitations
- 2024Severe plastic deformation for producing superfunctional ultrafine-grained and heterostructured materials: An interdisciplinary review
- 2024Design, structure/microstructure evolution, mechanical and corrosion properties of newly-developed pseudo-high entropy amorphous alloys
- 2024Passive film's resistivity distribution of crystalline Fe-based pseudo high entropy alloys
- 2024Fe–Ni-based alloys as highly active and low-cost oxygen evolution reaction catalyst in alkaline mediacitations
- 2024Severe plastic deformation for producing Superfunctional ultrafine-grained and heterostructured materials: An interdisciplinary reviewcitations
- 2023Newly-developed pseudo-high entropy amorphous alloys: Structure/microstructure evolution, mechanical and corrosion properties.citations
- 2023Newly-developed pseudo-high entropy amorphous alloys: Structure/microstructure evolution, mechanical and corrosion properties.citations
- 2023Passive film characterization of a novel FeCrMoNbB alloy by combined EIS and XPS
- 2023Erosion-corrosion properties of two novel Fe-based multicomponent alloys for marine applications
- 2022Passive film formation on the new biocompatible non-equiatomicTi 21 Nb 24 Mo 23 Hf 17 Ta 15 high entropy alloy before and after resting in simulated body fluidcitations
- 2022Passive film formation on the new biocompatible non-equiatomicTi 21 Nb 24 Mo 23 Hf 17 Ta 15 high entropy alloy before and after resting in simulated body fluidcitations
- 2022Novel FeCrMoNbB alloy for marine applications: corrosion behavior
- 2022Novel FeCrMoNbB alloy for marine applications: corrosion behavior
- 2021On the effect of plastic pre-straining on the corrosion behaviour of a duplex stainless steel and how the emergence of slip steps affects the hydrogen evolution reaction kineticscitations
- 2021Hydrogen storage in MgAlTiFeNi high entropy alloycitations
- 2021Hydrogen storage in MgAlTiFeNi high entropy alloycitations
- 2021Corrosion behavior and bioactivity of equimolar high entropy alloy TiNbZrHfTa : growth of nanotubes oxides
- 2021Corrosion behaviour of biomedical β-titanium alloys with the surface-modified by chemical etching and electrochemical methodscitations
- 2021Hot Deformation Behavior of a Beta Metastable TMZF Alloy: Microstructural and Constitutive Phenomenological Analysiscitations
- 2021Assessment of anodization conditions and annealing temperature on the microstructure, elastic modulus, and wettability of β-Ti40Nb alloycitations
- 2021Corrosion resistance investigation of surface modified biocompatible β-titanium alloys
- 2020Cathodic protection modeling of a covered and uncovered steel immerse in seawater: Corrosion characterizations
- 2019On the intrinsic passivating ability of Belite-Ye’elimite-Ferrite towards carbon steel: A straightforward comparison with ordinary Portland cementcitations
- 2017Sulfide stress corrosion study of a super martensitic stainless steel in H 2 S sour environments: Metallic sulfides formation and hydrogen embrittlementcitations
- 2017Sulfide stress corrosion study of a super martensitic stainless steel in H<font size=-1><sub>2</sub></font>S sour environments: Metallic sulfides formation and hydrogen embrittlementcitations
- 2017Synergy between molybdenum and nitrogen on the pitting corrosion and passive film resistance of austenitic stainless steels as a pH-dependent effectcitations
- 2017Effect of cold rolling on the structure and hydrogen properties of AZ91 and AM60D magnesium alloys subjected to ECAPcitations
- 2017Molybdenum effect on the Sulfide Stress Corrosion of a super martensitic stainless steel in sour environment highlighted by Electrochemical Impedance Spectroscopycitations
- 2014Corrosion properties of Fe–Cr–Nb–B amorphous alloys and coatingscitations
- 2010CGO-based electrochemical catalysts for low temperature combustion of propenecitations
- 2009Physicochemical Origins of Electrochemical Promotion of LSM/YSZcitations
Places of action
Organizations | Location | People |
---|
article
Hot Deformation Behavior of a Beta Metastable TMZF Alloy: Microstructural and Constitutive Phenomenological Analysis
Abstract
International audience ; A metastable beta TMZF alloy was tested by isothermal compression under different conditions of deformation temperature (923 to 1173 K), strain rate (0.172, 1.72, and 17.2 s−1), and a constant strain of 0.8. Stress–strain curves, constitutive constants calculations, and microstructural analysis were performed to understand the alloy’s hot working behavior in regards to the softening and hardening mechanisms operating during deformation. The primary softening mechanism was dynamic recovery, promoting dynamic recrystallization delay during deformation at higher temperatures and low strain rates. Mechanical twinning was an essential deformation mechanism of this alloy, being observed on a nanometric scale. Spinodal decomposition evidence was found to occur during hot deformation. Different models of phenomenological constitutive equations were tested to verify the effectiveness of flow stress prediction. The stress exponent n, derived from the strain-compensated Arrhenius-type constitutive model, presented values that point to the occurrence of internal stress at the beginning of the deformation, related to complex interactions of dislocations and dispersed phases.