People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Simoes, S.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (40/40 displayed)
- 2024Micro-arc and thermal oxidized titanium matrix composites for tribocorrosion-resistant biomedical implantscitations
- 2024Microstructure and Mechanical Properties of Ti6Al4V to Al2O3 Brazed Joints Using Ti-Ag/Cu-Ti Thin Filmscitations
- 2024Aluminum Nanocomposites Reinforced with Al2O3 Nanoparticles: Synthesis, Structure, and Propertiescitations
- 2023Investigation of Mechanical Properties of Al/CNT Nanocomposites Produced by Powder Metallurgycitations
- 2023Microstructural Characterization of Al/CNTs Nanocomposites after Cold Rollingcitations
- 2023Production and Characterization of Cu/CNT Nanocompositescitations
- 2023Investigation of thermal stability of aluminum matrix nanocomposites using functionalized MWCNTscitations
- 2022Preliminary tribo-electrochemical and biological responses of the Ti-TiB-TiCx in-situ composites intended for load-bearing biomedical implantscitations
- 2022Joining of Zirconia to Ti6Al4V Using Ag-Cu Sputter-Coated Ti Brazing Fillercitations
- 2022Joining of Ti6Al4V to Al2O3 Using Nanomultilayerscitations
- 2022Deformation Behaviour of Cold-Rolled Ni/CNT Nanocompositescitations
- 2022Microstructure, mechanical properties and corrosion behaviour of Ti6Al4V/Al2O3 joints brazed with TiCuNi fillercitations
- 2021Strengthening Mechanisms in Carbon Nanotubes Reinforced Metal Matrix Composites: A Reviewcitations
- 2021Investigation on the Strengthening Mechanisms of Nickel Matrix Nanocompositescitations
- 2021Joining Ti6Al4V to Alumina by Diffusion Bonding Using Titanium Interlayerscitations
- 2021Heat-Treated Ni-CNT Nanocomposites Produced by Powder Metallurgy Routecitations
- 2021Diffusion Bonding of Ti6Al4V to Al2O3 Using Ni/Ti Reactive Multilayerscitations
- 2020Recent Advances in EBSD Characterization of Metalscitations
- 2020Effect of Deposition Parameters on the Reactivity of Al/Ni Multilayer Thin Filmscitations
- 2020Characterization of Ni-CNTs Nanocomposites Produced by Ball-Millingcitations
- 2020Joining Alumina to Titanium Alloys Using Ag-Cu Sputter-Coated Ti Brazing Fillercitations
- 2020Effect of Morphology and Structure of MWCNTs on Metal Matrix Nanocompositescitations
- 2019EBSD Analysis of Metal Matrix Nanocomposite Microstructure Produced by Powder Metallurgycitations
- 2019Microstructural Characterization of Carbon Nanotubes (CNTs)-Reinforced Nickel Matrix Nanocompositescitations
- 2019Multilayered ZrN/CrN coatings with enhanced thermal and mechanical propertiescitations
- 2019STUDY OF ADVANCED NANOSCALE ZRN/CRN MULTILAYER COATINGScitations
- 2018Joining of -TiAl Alloy to Ni-Based Superalloy Using Ag-Cu Sputtered Coated Ti Brazing Filler Foilcitations
- 2018Raman spectroscopy fingerprint of stainless steel-MWCNTs nanocomposite processed by ball-millingcitations
- 2018Morphology, Structure and Thermal Properties of Multilayer ZrN/CrN Coatingscitations
- 2018Recent Progress in the Joining of Titanium Alloys to Ceramicscitations
- 2017Aluminum and Nickel Matrix Composites Reinforced by CNTs: Dispersion/Mixture by Ultrasonicationcitations
- 2016Microstructural Characterization of Diffusion Bonds Assisted by Ni/Ti Nanolayerscitations
- 2016Microstructural Characterization of Aluminum-Carbon Nanotube Nanocomposites Produced Using Different Dispersion Methodscitations
- 2015Influence of dispersion/mixture time on mechanical properties of Al-CNTs nanocompositescitations
- 2014Improved dispersion of carbon nanotubes in aluminum nanocompositescitations
- 2014Reactive Commercial Ni/Al Nanolayers for Joining Lightweight Alloyscitations
- 2013Reaction zone formed during diffusion bonding of TiNi to Ti6Al4V using Ni/Ti nanolayerscitations
- 2012CNT-aluminum metal matrix nanocomposites
- 2012Microstructure of Reaction Zone Formed During Diffusion Bonding of TiAl with Ni/Al Multilayercitations
- 2011Diffusion bonding of TiAl using reactive Ni/Al nanolayers and Ti and Ni foilscitations
Places of action
Organizations | Location | People |
---|
article
Joining Ti6Al4V to Alumina by Diffusion Bonding Using Titanium Interlayers
Abstract
This work aims to investigate the joining of Ti6Al4V alloy to alumina by diffusion bonding using titanium interlayers: thin films (1 mu m) and commercial titanium foils (5 mu m). The Ti thin films were deposited by magnetron sputtering onto alumina. The joints were processed at 900, 950, and 1000 & DEG;C, dwell time of 10 and 60 min, under contact pressure. Experiments without interlayer were performed for comparison purposes. Microstructural characterization of the interfaces was conducted by optical microscopy (OM), scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS), and electron backscatter diffraction (EBSD). The mechanical characterization of the joints was performed by nanoindentation to obtain hardness and reduced Young's modulus distribution maps and shear strength tests. Joints processed without interlayer have only been achieved at 1000 & DEG;C. Conversely, joints processed using Ti thin films as interlayer showed promising results at temperatures of 950 & DEG;C for 60 min and 1000 & DEG;C for 10 and 60 min, under low pressure. The Ti adhesion to the alumina is a critical aspect of the diffusion bonding process and the joints produced with Ti freestanding foils were unsuccessful. The nanoindentation results revealed that the interfaces show hardness and reduced Young modulus, which reflect the observed microstructure. The average shear strength values are similar for all joints tested (52 & PLUSMN; 14 MPa for the joint processed without interlayer and 49 & PLUSMN; 25 MPa for the joint processed with interlayer), which confirms that the use of the Ti thin film improves the diffusion bonding of the Ti6Al4V alloy to alumina, enabling a decrease in the joining temperature and time.