People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Henkel, Sebastian
TU Bergakademie Freiberg
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2024Untersuchung eines örtlichen Messkonzepts zur Beschreibung des Ermüdungsverhaltens gewebeverstärkter Faser-Kunststoff-Verbunde
- 2022Influence of Plastic Strain Control on Martensite Evolution and Fatigue Life of Metastable Austenitic Stainless Steelcitations
- 2021Very High Cycle Fatigue Investigations on the Fatigue Strength of Additive Manufactured and Conventionally Wrought Inconel 718 at 873 Kcitations
- 2021Cyclic Crack Growth in Chemically Tailored Isotropic Austenitic Steel Processed by Electron Beam Powder Bed Fusioncitations
- 2020Determining the damage and failure behaviour of textile reinforced composites under combined in-plane and out-of-plane loadingcitations
- 2016Investigation of Phase Transformations in High-Alloy Austenitic TRIP Steel Under High Pressure (up to 18 GPa) by In Situ Synchrotron X-ray Diffraction and Scanning Electron Microscopycitations
Places of action
Organizations | Location | People |
---|
article
Very High Cycle Fatigue Investigations on the Fatigue Strength of Additive Manufactured and Conventionally Wrought Inconel 718 at 873 K
Abstract
<jats:p>The fatigue lives of additively manufactured (AM) Inconel 718 (IN718) produced by selective electron beam melting and conventional wrought material as reference conditions were studied in the very high cycle fatigue regime under fully reversed loading (R = −1) at the elevated temperature of 873 K using an ultrasonic fatigue testing system. The fatigue lives of the AM material were significantly reduced compared to the wrought material, which is discussed in relation to the microstructure and a fractographical analysis. The additively manufactured material showed large columnar grains with a favoured orientation to the building direction and porosity, whereas the wrought material showed a fine-grained structure with no significant texture, but had Nb- and Ti-rich non-metallic inclusions. Crystallographic crack initiation as well as crack initiation from the surface or internal defects were observed for the AM and the wrought IN718, respectively.</jats:p>