People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Halle, Thorsten
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Process Window and Repeatability of Thermomechanical Tangential Ring Rollingcitations
- 2023Surface integrity modification of CoCrMo alloy by deep rolling in combination with sub‐zero cooling as potential implant applicationcitations
- 2022Microstructure‐dependent crevice corrosion damage of implant materials <scp>CoCr28Mo6</scp>, <scp>TiAl6V4</scp> and <scp>REX</scp> 734 under severe inflammatory conditionscitations
- 2022Material-property correlations for a high-alloy special steelcitations
- 2021On the Q&P Potential of a Commercial Spring Steelcitations
- 2021Data based model predictive control for ring rollingcitations
- 2020Identification of the flow properties of a 0.54% carbon steel during continuous cooling
- 2020Microstructure evolution and mechanical properties of refractory Mo-Nb-V-W-Ti high-entropy alloys
- 2020In vivo corrosion and damages in modular shoulder prostheses
- 2019Correlative Microscopy – Color Etching vs. Electron Backscatter Diffraction: Application Potenials and Limitationscitations
Places of action
Organizations | Location | People |
---|
article
On the Q&P Potential of a Commercial Spring Steel
Abstract
<jats:p>Over the last years heat treatment concept of “quenching and partitioning” (Q&P) has reached popularity for its ability to precisely adjust material properties to desired values. Mostly, Q&P process are applied on tailor-made materials with high purities or prototype alloys. The research in hand presents the whole routine of how to investigate the potential of a commercial 0.54C-1.45Si-0.71Mn spring steel in terms of Q&P heat treatment from lab scale in dilatometer measurements to widely used inductive heat treatment on larger scale. In order to obtain the small process window for this material we were focusing on the interplay of the formed microstructure and the resulting mechanical properties in hardness measurements, compression tests as well as tensile tests. After full austenitizing, three different Q&P processing routes were applied. Microstructural analyses by optical microscopy, Scanning Electron Microscopy (SEM) and Electron Backscatter Diffraction (EBSD) exhibit a condition with 6.4% and 15% volume fraction of fine distributed retained austenite. Interestingly, the 15% of retained austenite developed during the partitioning heat treatment. Contradictory to our expectations, tensile and compression testing were showing that the 6.4% condition achieved improved mechanical properties compared to the 15% retained austenite condition. The remarkable conclusion is that not only volume fraction and fine distribution of retained austenite determines the potential of improving mechanical properties by Q&P in commercial alloys: also the process step when the retained austenite is developing as well as occurring parallel formation of carbides may strongly influence this potential.</jats:p>