Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mukarram, Muhammad

  • Google
  • 2
  • 4
  • 36

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Development of eutectic high entropy alloy by addition of W to CoCrFeNi HEA20citations
  • 2021Systematic Development of Eutectic High Entropy Alloys by Thermodynamic Modeling and Experimentation: An Example of the CoCrFeNi-Mo System16citations

Places of action

Chart of shared publication
Yaqoob, Khurram
1 / 5 shared
Yaqub, Talha Bin
1 / 8 shared
Fernandes, Filipe
1 / 26 shared
Abdullah, M.
1 / 1 shared
Chart of publication period
2023
2021

Co-Authors (by relevance)

  • Yaqoob, Khurram
  • Yaqub, Talha Bin
  • Fernandes, Filipe
  • Abdullah, M.
OrganizationsLocationPeople

article

Systematic Development of Eutectic High Entropy Alloys by Thermodynamic Modeling and Experimentation: An Example of the CoCrFeNi-Mo System

  • Mukarram, Muhammad
Abstract

<jats:p>Face centered cubic (FCC) high-entropy alloys (HEA) exhibit excellent ductility while body centered cubic (BCC) HEAs are characterized by high strength. Development of fine two-phase eutectic microstructure (consisting of a tough phase such as fcc and a hard phase such as bcc/intermetallic) can help in obtaining an extraordinary combination of strength and ductility in HEAs. Designing eutectic high entropy alloys is an extremely difficult task for which different empirical and non-empirical methods have been previously tried. In the present study, the possibility of developing a eutectic microstructure by the addition of Mo to CoCrFeNi was evaluated by calculation of the pseudo-binary phase diagram. Experimental results validated the presence of eutectic reaction in the calculated phase diagrams; however, small changes in the calculated phase diagrams were proposed. It has been shown that calculated pseudo-binary phase diagrams can provide a very good starting point for the development of eutectic HEAs and help in exponentially reducing the amount of experimental effort that may be required otherwise. Eutectic mixture consisting of FCC (A2) phase and intermetallic phases (σ and μ) was successfully obtained by the addition of Mo to the CoCrFeNi system. The development of the eutectic microstructure showed a profound effect on the mechanical properties. Hardness of the samples increased from 150 HV for CoCrFeNiMo0.1 to 425.5 HV for CoCrFeNiMo1.0, whereas yield strength increased from around 218 MPa for CoCrFeNiMo0.1 to around 1100 MPa for CoCrFeNiMo1.0.</jats:p>

Topics
  • impedance spectroscopy
  • phase
  • strength
  • hardness
  • yield strength
  • intermetallic
  • ductility
  • phase diagram
  • eutectic microstructure