People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Reis, Ana
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023Low- and High-Pressure Casting Aluminum Alloys: A Reviewcitations
- 2023Upcycling Aluminium Chips to Powder Feedstocks for Powder Metallurgy Applicationscitations
- 2023Additively Manufactured High-Strength Aluminum Alloys: A Reviewcitations
- 2022Damage Evolution Simulations via a Coupled Crystal Plasticity and Cohesive Zone Model for Additively Manufactured Austenitic SS 316L DED Componentscitations
- 2022Tensile Properties of As-Built 18Ni300 Maraging Steel Produced by DEDcitations
- 2022Numerical predictions of orthogonal cutting–induced residual stress of super alloy Inconel 718 considering dynamic recrystallizationcitations
- 2022An Adaptive Thermal Finite Element Simulation of Direct Energy Deposition With Reinforcement Learning: A Conceptual Frameworkcitations
- 2021Fracture Prediction Based on Evaluation of Initial Porosity Induced By Direct Energy Depositioncitations
- 2021Comparison of the machinability of the 316L and 18Ni300 additively manufactured steels based on turning testscitations
- 2021Numerical-experimental plastic-damage characterisation of additively manufactured 18ni300 maraging steel by means of multiaxial double-notched specimenscitations
- 2021Optimization of Direct Laser Deposition of a Martensitic Steel Powder (Metco 42C) on 42CrMo4 Steelcitations
- 2021An innovation in finite element simulation via crystal plasticity assessment of grain morphology effect on sheet metal formabilitycitations
- 2021Inconel 625/AISI 413 Stainless Steel Functionally Graded Material Produced by Direct Laser Depositioncitations
- 2021Deposition of Nickel-Based Superalloy Claddings on Low Alloy Structural Steel by Direct Laser Depositioncitations
- 2018Characterizing fracture forming limit and shear fracture forming limit for sheet metalscitations
Places of action
Organizations | Location | People |
---|
article
Deposition of Nickel-Based Superalloy Claddings on Low Alloy Structural Steel by Direct Laser Deposition
Abstract
<jats:p>In this study, direct laser deposition (DLD) of nickel-based superalloy powders (Inconel 625) on structural steel (42CrMo4) was analysed. Cladding layers were produced by varying the main processing conditions: laser power, scanning speed, feed rate, and preheating. The processing window was established based on conditions that assured deposited layers without significant structural defects and a dilution between 15 and 30%. Scanning electron microscopy, energy dispersive spectroscopy, and electron backscatter diffraction were performed for microstructural characterisation. The Vickers hardness test was used to analyse the mechanical response of the optimised cladding layers. The results highlight the influence of preheating on the microstructure and mechanical responses, particularly in the heat-affected zone. Substrate preheating to 300 °C has a strong effect on the cladding/substrate interface region, affecting the microstructure and the hardness distribution. Preheating also reduced the formation of the deleterious Laves phase in the cladding and altered the martensite microstructure in the heat-affected zone, with a substantial decrease in hardness.</jats:p>