Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Killmore, Chris R.

  • Google
  • 2
  • 5
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Edge Microstructure and Strength Gradient in Thermally Cut Ti-Alloyed Martensitic Steelscitations
  • 2018Effect of Mo, Nb and V on Hot Deformation Behaviour, Microstructure and Hardness of Microalloyed Steels3citations

Places of action

Chart of shared publication
Li, Huijun
1 / 7 shared
Rizwan, Muhammad
1 / 1 shared
Kostryzhev, Andrii
2 / 14 shared
Yu, Dake
1 / 1 shared
Singh, Navjeet
1 / 2 shared
Chart of publication period
2021
2018

Co-Authors (by relevance)

  • Li, Huijun
  • Rizwan, Muhammad
  • Kostryzhev, Andrii
  • Yu, Dake
  • Singh, Navjeet
OrganizationsLocationPeople

article

Edge Microstructure and Strength Gradient in Thermally Cut Ti-Alloyed Martensitic Steels

  • Li, Huijun
  • Rizwan, Muhammad
  • Kostryzhev, Andrii
  • Killmore, Chris R.
  • Yu, Dake
Abstract

<jats:p>Recently developed Ti-alloyed martensitic steels are believed to exhibit higher wear resistance than traditionally quenched and tempered medium carbon steels. However, their properties may deteriorate during thermal cutting and welding as a result of microstructure tempering. This would present significant challenges for the metal fabrication industries. A decrease in strength and wear resistance associated with tempering should vary with steel composition, initial steel microstructure and properties, and cutting method. In this work, we investigated the effect of thermal cutting on the edge microstructure and properties in two alloyed plate steels containing 0.27C-0.40Ti and 0.39C-0.60Ti (wt.%) commercially rolled to 12 mm thickness. Three cutting methods were applied to each of the two plates: oxy-fuel, plasma and water-jet. Microstructure characterisation was carried out using optical and scanning electron microscopy. With an increase in thermal effect, from water-jet to plasma to oxy-fuel, the heat affected zone width increased and hardness decreased in both steels. However, the hardness profile from the cut edge to the base metal significantly varied with steel composition, particularly C and Ti contents. The dependence of grain structure and precipitation kinetics on steel composition, and cutting method, were thoroughly investigated and linked to the hardness profile variation. The obtained results will be used to optimise the technological parameters for cutting and welding of Ti-alloyed martensitic steels.</jats:p>

Topics
  • Carbon
  • grain
  • scanning electron microscopy
  • wear resistance
  • strength
  • steel
  • hardness
  • precipitation
  • tempering