Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Żrodowski, Łukasz

  • Google
  • 12
  • 57
  • 140

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (12/12 displayed)

  • 2024Microstructure and Corrosion of Mg-Based Composites Produced from Custom-Made Powders of AZ31 and Ti6Al4V via Pulse Plasma Sintering2citations
  • 2024Polymer‐based filaments with embedded magnetocaloric <scp>Ni‐Mn‐Ga</scp> Heusler alloy particles for additive manufacturing3citations
  • 2023How to control the crystallization of metallic glasses during laser powder bed fusion? Towards part-specific 3D printing of in situ composites14citations
  • 2023Selective Laser Melting of Fe-Based Metallic Glasses With Different Degree of Plasticity3citations
  • 2023Atomisation of Ti-6Ta-1.5Zr-0.2Ru-5Cu (wt%) for additive manufacturing for biomedical applications2citations
  • 2022A comparison of the microstructure-dependent corrosion of dual-structured Mg-Li alloys fabricated by powder consolidation methods: Laser powder bed fusion vs pulse plasma sintering26citations
  • 2022How to Control the Crystallization of Metallic Glasses During Laser Powder Bed Fusion? Towards Part-Specific 3d Printing of in Situ Compositescitations
  • 2021Ultrashort Sintering and Near Net Shaping of Zr-Based AMZ4 Bulk Metallic Glass3citations
  • 2021Microstructure and magnetic properties of selected laser melted Ni-Mn-Ga and Ni-Mn-Ga-Fe powders derived from as melt-spun ribbons precursors15citations
  • 2020Analysis of Microstructure and Properties of a Ti–AlN Composite Produced by Selective Laser Melting12citations
  • 2019New approach to amorphization of alloys with low glass forming ability via selective laser melting60citations
  • 2016The Novel Scanning Strategy For Fabrication Metallic Glasses By Selective Laser Meltingcitations

Places of action

Chart of shared publication
Dobkowska, Anna
4 / 33 shared
Kruszewski, Mirosław
2 / 16 shared
Ciftci, Jakub
4 / 8 shared
Morończyk, Bartosz
8 / 12 shared
Zybala, Rafal
1 / 4 shared
Zgłobicka, Izabela
1 / 4 shared
Franco, Victorino
1 / 4 shared
Diaz-Garcia, Alvaro
1 / 1 shared
Law, Jia Yan
1 / 10 shared
Wróblewski, Rafał
7 / 11 shared
Choma, Tomasz
4 / 6 shared
Leonowicz, Marcin
4 / 26 shared
Li, X.
2 / 71 shared
Krawczynska, Agnieszka
2 / 7 shared
Swieszkowski, Wojciech
3 / 15 shared
Żrodowski, Cezary
2 / 2 shared
Błyskun, Piotr
4 / 11 shared
Kulikowski, Krzysztof
2 / 18 shared
Małachowska, Aleksandra
3 / 3 shared
Moneta, Grzegorz
2 / 2 shared
Cetner, Tomasz
2 / 2 shared
Jaroszewicz, Jakub
5 / 23 shared
Wysocki, Bartlomiej
1 / 4 shared
Yuan, L.
2 / 7 shared
Chulist, Robert
3 / 23 shared
Lampke, Thomas
1 / 388 shared
Kuś, Aleksandra
1 / 1 shared
Maj, Łukasz
1 / 5 shared
Phala, Ngwakoana
1 / 1 shared
Cornish, Lesley
1 / 1 shared
Möller, Hein
1 / 2 shared
Koralnik, Milena
1 / 18 shared
Mizera, Jaroslaw
1 / 18 shared
Chlewicka, Monika
1 / 7 shared
Kuc, Dariusz
1 / 14 shared
Adamczyk-Cieślak, Bogusława
2 / 77 shared
Masset, Patrick
1 / 2 shared
Wysocki, Bartłomiej
4 / 14 shared
Kasonde, Maweja
1 / 1 shared
Ostrysz, Mateusz
1 / 1 shared
Pomian, Karolina
1 / 1 shared
Łacisz, Wojciech
1 / 1 shared
Rosiński, Marcin
1 / 11 shared
Rygier, Tomasz
1 / 1 shared
Wójcik, Anna
1 / 9 shared
Maziarz, Wojciech
1 / 18 shared
Kowalczyk, Maciej
1 / 30 shared
Czaja, Paweł
1 / 14 shared
Szustecki, Maciej
1 / 1 shared
Sitek, Ryszard
1 / 38 shared
Wiśniewski, Paweł
1 / 26 shared
Mizera, Jarosław
1 / 113 shared
Krawczyńska, Agnieszka
1 / 15 shared
Zdunek, Joanna
1 / 34 shared
Ferenc, Jarosław
1 / 11 shared
Święszkowski, Wojciech
2 / 53 shared
Kurzydłowski, Krzysztof
1 / 114 shared
Chart of publication period
2024
2023
2022
2021
2020
2019
2016

Co-Authors (by relevance)

  • Dobkowska, Anna
  • Kruszewski, Mirosław
  • Ciftci, Jakub
  • Morończyk, Bartosz
  • Zybala, Rafal
  • Zgłobicka, Izabela
  • Franco, Victorino
  • Diaz-Garcia, Alvaro
  • Law, Jia Yan
  • Wróblewski, Rafał
  • Choma, Tomasz
  • Leonowicz, Marcin
  • Li, X.
  • Krawczynska, Agnieszka
  • Swieszkowski, Wojciech
  • Żrodowski, Cezary
  • Błyskun, Piotr
  • Kulikowski, Krzysztof
  • Małachowska, Aleksandra
  • Moneta, Grzegorz
  • Cetner, Tomasz
  • Jaroszewicz, Jakub
  • Wysocki, Bartlomiej
  • Yuan, L.
  • Chulist, Robert
  • Lampke, Thomas
  • Kuś, Aleksandra
  • Maj, Łukasz
  • Phala, Ngwakoana
  • Cornish, Lesley
  • Möller, Hein
  • Koralnik, Milena
  • Mizera, Jaroslaw
  • Chlewicka, Monika
  • Kuc, Dariusz
  • Adamczyk-Cieślak, Bogusława
  • Masset, Patrick
  • Wysocki, Bartłomiej
  • Kasonde, Maweja
  • Ostrysz, Mateusz
  • Pomian, Karolina
  • Łacisz, Wojciech
  • Rosiński, Marcin
  • Rygier, Tomasz
  • Wójcik, Anna
  • Maziarz, Wojciech
  • Kowalczyk, Maciej
  • Czaja, Paweł
  • Szustecki, Maciej
  • Sitek, Ryszard
  • Wiśniewski, Paweł
  • Mizera, Jarosław
  • Krawczyńska, Agnieszka
  • Zdunek, Joanna
  • Ferenc, Jarosław
  • Święszkowski, Wojciech
  • Kurzydłowski, Krzysztof
OrganizationsLocationPeople

article

Microstructure and magnetic properties of selected laser melted Ni-Mn-Ga and Ni-Mn-Ga-Fe powders derived from as melt-spun ribbons precursors

  • Wójcik, Anna
  • Morończyk, Bartosz
  • Maziarz, Wojciech
  • Wróblewski, Rafał
  • Kowalczyk, Maciej
  • Chulist, Robert
  • Czaja, Paweł
  • Żrodowski, Łukasz
Abstract

<p>Selective Laser Melting was successfully used as a fabrication method to produce Ni-MnGa and Ni-Mn-Ga-Fe ferromagnetic shape memory alloys. The starting material in a powder form with an average particle size of about 17.6 µm was produced by milling of as melt-spun ribbons. The microstructure, phase composition, and martensitic transformation behavior of both powder precursors and laser melted alloys were investigated by several methods, including high energy Xray diffraction, electron microscopy, and vibrating sample magnetometry. The as laser melted materials are chemically homogenous and show a typical layered microstructure. Both alloy compositions have a duplex structure consisting either of austenite and 10M martensite (Ni-Mn-Ga) or a mixture of 14M and NM martensitic phases (Ni-Mn-Ga-Fe), contrary to the as milled powder precursors showing fcc structure in both cases. The forward martensitic transformation takes place at 336 and 325 K for Ni-Mn-Ga and Ni-Mn-Ga-Fe, respectively, while the magnetic response is much stronger for Ni-Mn-Ga than for the quaternary alloy. The results show that Selective Laser Melting allows for producing of good quality, homogenous materials. However, their microstructural features and consequently shape memory behavior should be tailored by additional heat treatment.</p>

Topics
  • impedance spectroscopy
  • microstructure
  • melt
  • grinding
  • milling
  • layered
  • selective laser melting
  • electron microscopy
  • alloy composition