People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Żrodowski, Łukasz
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Microstructure and Corrosion of Mg-Based Composites Produced from Custom-Made Powders of AZ31 and Ti6Al4V via Pulse Plasma Sinteringcitations
- 2024Polymer‐based filaments with embedded magnetocaloric <scp>Ni‐Mn‐Ga</scp> Heusler alloy particles for additive manufacturingcitations
- 2023How to control the crystallization of metallic glasses during laser powder bed fusion? Towards part-specific 3D printing of in situ compositescitations
- 2023Selective Laser Melting of Fe-Based Metallic Glasses With Different Degree of Plasticitycitations
- 2023Atomisation of Ti-6Ta-1.5Zr-0.2Ru-5Cu (wt%) for additive manufacturing for biomedical applicationscitations
- 2022A comparison of the microstructure-dependent corrosion of dual-structured Mg-Li alloys fabricated by powder consolidation methods: Laser powder bed fusion vs pulse plasma sinteringcitations
- 2022How to Control the Crystallization of Metallic Glasses During Laser Powder Bed Fusion? Towards Part-Specific 3d Printing of in Situ Composites
- 2021Ultrashort Sintering and Near Net Shaping of Zr-Based AMZ4 Bulk Metallic Glasscitations
- 2021Microstructure and magnetic properties of selected laser melted Ni-Mn-Ga and Ni-Mn-Ga-Fe powders derived from as melt-spun ribbons precursorscitations
- 2020Analysis of Microstructure and Properties of a Ti–AlN Composite Produced by Selective Laser Meltingcitations
- 2019New approach to amorphization of alloys with low glass forming ability via selective laser meltingcitations
- 2016The Novel Scanning Strategy For Fabrication Metallic Glasses By Selective Laser Melting
Places of action
Organizations | Location | People |
---|
article
Microstructure and magnetic properties of selected laser melted Ni-Mn-Ga and Ni-Mn-Ga-Fe powders derived from as melt-spun ribbons precursors
Abstract
<p>Selective Laser Melting was successfully used as a fabrication method to produce Ni-MnGa and Ni-Mn-Ga-Fe ferromagnetic shape memory alloys. The starting material in a powder form with an average particle size of about 17.6 µm was produced by milling of as melt-spun ribbons. The microstructure, phase composition, and martensitic transformation behavior of both powder precursors and laser melted alloys were investigated by several methods, including high energy Xray diffraction, electron microscopy, and vibrating sample magnetometry. The as laser melted materials are chemically homogenous and show a typical layered microstructure. Both alloy compositions have a duplex structure consisting either of austenite and 10M martensite (Ni-Mn-Ga) or a mixture of 14M and NM martensitic phases (Ni-Mn-Ga-Fe), contrary to the as milled powder precursors showing fcc structure in both cases. The forward martensitic transformation takes place at 336 and 325 K for Ni-Mn-Ga and Ni-Mn-Ga-Fe, respectively, while the magnetic response is much stronger for Ni-Mn-Ga than for the quaternary alloy. The results show that Selective Laser Melting allows for producing of good quality, homogenous materials. However, their microstructural features and consequently shape memory behavior should be tailored by additional heat treatment.</p>