Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bertinetti, Andrea

  • Google
  • 2
  • 7
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Lessons Learnt - Development Of Additive Manufacturing For Soft Magnetic Electric Motor Componentscitations
  • 2021Influence of Surface Preparation and Heat Treatment on Mechanical Behavior of Hybrid Aluminum Parts Manufactured by a Combination of Laser Powder Bed Fusion and Conventional Manufacturing Processes13citations

Places of action

Chart of shared publication
Lindroos, Tomi
1 / 55 shared
Manninen, Aino
1 / 7 shared
Riipinen, Tuomas
1 / 20 shared
Kinos, Timo
1 / 2 shared
Pippuri-Mäkeläinen, Jenni
1 / 9 shared
Antikainen, Atte
1 / 13 shared
Odden, Jan Ove
1 / 3 shared
Chart of publication period
2024
2021

Co-Authors (by relevance)

  • Lindroos, Tomi
  • Manninen, Aino
  • Riipinen, Tuomas
  • Kinos, Timo
  • Pippuri-Mäkeläinen, Jenni
  • Antikainen, Atte
  • Odden, Jan Ove
OrganizationsLocationPeople

article

Influence of Surface Preparation and Heat Treatment on Mechanical Behavior of Hybrid Aluminum Parts Manufactured by a Combination of Laser Powder Bed Fusion and Conventional Manufacturing Processes

  • Bertinetti, Andrea
Abstract

<jats:p>Today, in industry, laser-based additive manufacturing (LAM) is used to produce high-value parts of very complex designs that are not manufacturable by conventional technologies; this process’ low production throughput and high cost prevent it from being used more extensively. One way to exploit the benefits of LAM in industry is to have it combined with lower-cost manufacturing technologies. In a hybrid approach, LAM can be integrated within an assembly line’s welding station to complete the manufacturing of a product by depositing a foreign material on a substrate only where needed, or by building structures of complex 3D geometries (e.g., lattice structures) directly onto inexpensive preforms. To pave the way for using a hybrid approach design in real applications, as a prime requirement, the chosen technology must grant comparable structural integrity to its products with respect to its conventional counterparts. In this work, different types of surface pretreatments for substrates were investigated as a key enabling factor to tailor the bi-material system’s mechanical properties in use. Hybrid samples were made by depositing AlSi10Mg by direct metal laser sintering onto A356-T6 aluminum bases prefabricated by casting and forging, and their properties were compared with fully homogeneous samples that were conventionally produced. Specifically referring to the automotive use case, both these alloy grades were chosen for their extensive use in the production of motor vehicles. The testing campaign, characterized by microscopy, mechanical testing, and fatigue, revealed that the structural integrity of the hybrid samples is comparable with the benchmarks when standard heat treatments are adopted. This result makes the prospect of the exploitation of the hybridization concept as conceived very promising for the future.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • aluminium
  • fatigue
  • selective laser melting
  • casting
  • forging
  • sintering
  • laser sintering
  • microscopy