Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ozerov, Maxim

  • Google
  • 2
  • 8
  • 18

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Microstructure Evolution and Mechanical Behavior of TiB-Reinforced Ti-6.5Al-2Zr-1Mo-1V Matrix Composites Obtained by Vacuum Arc Melting and Spark Plasma Sintering1citations
  • 2021Laser Beam Welding of a Ti-15Mo/TiB Metal–Matrix Composite17citations

Places of action

Chart of shared publication
Yurchenko, Nikita
1 / 3 shared
Klimenko, Denis
1 / 2 shared
Huang, Lujun
1 / 2 shared
Sokolovsky, Vitaly
1 / 1 shared
Zherebtsov, Sergey
1 / 6 shared
Astakhov, Ilya
1 / 3 shared
Stepanov, Nikita
1 / 5 shared
Zhao, Shiyan
1 / 1 shared
Chart of publication period
2024
2021

Co-Authors (by relevance)

  • Yurchenko, Nikita
  • Klimenko, Denis
  • Huang, Lujun
  • Sokolovsky, Vitaly
  • Zherebtsov, Sergey
  • Astakhov, Ilya
  • Stepanov, Nikita
  • Zhao, Shiyan
OrganizationsLocationPeople

article

Laser Beam Welding of a Ti-15Mo/TiB Metal–Matrix Composite

  • Ozerov, Maxim
Abstract

<jats:p>A Ti-15Mo/TiB metal–matrix composite was produced by spark plasma sintering at 1400 °C. The fractions of the elements in the initial powder mixture were 80.75 wt.% Ti, 14.25 wt.% Mo, and 5 wt.% TiB2. The initial structure of the synthesized composite was composed of bcc β titanium matrix and needle-like TiB reinforcements with an average thickness of 500 ± 300 nm. Microstructure and mechanical properties of the composite were studied after laser beam welding (LBW) was carried out at room temperature or various pre-heating temperatures: 200, 400, or 600 °C. The quality of laser beam welded joints was not found to be dependent noticeably on the pre-heating temperature; all welds consisted of pores the size of which reached 200–300 µm. In contrast to acicular individual particles in the base material, TiB whiskers in the weld zone were found to have a form of bunches. The maximum microhardness in the weld zone (~700 HV) was obtained after welding at room temperature or at 200 °C; this value was ~200 HV higher than that in the base material.</jats:p>

Topics
  • microstructure
  • pore
  • composite
  • titanium
  • sintering