People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nikam, Sagar
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2022Powder Reuse in Laser-Based Powder Bed Fusion of Ti6Al4V—Changes in Mechanical Properties during a Powder Top-Up Regimecitations
- 2021A Simplified Thermal Approximation Method to include the effects of Marangoni Convection in the melt pools of processes that involve moving point heat sourcescitations
- 2021Analysis of spatter removal by sieving during a powder-bed fusion manufacturing campaign in grade 23 titanium alloycitations
- 2020Reuse of grade 23 Ti6Al4V powder during the laser-based powder bed fusion processcitations
Places of action
Organizations | Location | People |
---|
article
Analysis of spatter removal by sieving during a powder-bed fusion manufacturing campaign in grade 23 titanium alloy
Abstract
The Laser-based Powder Bed Fusion (L-PBF) process uses a laser beam to selectively melt powder particles deposited in a layer-wise fashion to manufacture components derived from Computer-Aided Design (CAD) information. During laser processing, material is ejected from the melt pool and is known as spatter. Spatter particles can have undesirable geometries for the L-PBF process, thereby compromising the quality of the powder for further reuse. An integral step in any powder replenishing and reuse procedure is the sieving process. The sieving process captures spatter particles within the exposed powder that have a diameter larger than a defined mesh size. This manuscript reports on Ti6Al4V (Grade 23) alloy powder that had been subjected to seven reuse iterations, focusing on the characterisation of powder particles that had been captured (i.e., removed) by the sieving processes. Characterisation included chemical composition focusing upon interstitial elements O, N and H (wt.%), particle morphology and particle size analysis. On review of the compositional analysis, the oxygen contents were 0.43 wt.% and 0.40 wt.% within the 63 µm and 50 µm sieve-captured powder, respectively. Additionally, it was found that a minimum of 79% and 63% of spatter particles were present within the captured powder removed by the 63 µm and 50 µm sieves, respectively.