Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Killmore, Chris

  • Google
  • 1
  • 1
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Effect of Processing Parameters on Interphase Precipitation and Mechanical Properties in Novel CrVNb Microalloyed Steel3citations

Places of action

Chart of shared publication
Kostryzhev, Andrii
1 / 14 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Kostryzhev, Andrii
OrganizationsLocationPeople

article

Effect of Processing Parameters on Interphase Precipitation and Mechanical Properties in Novel CrVNb Microalloyed Steel

  • Killmore, Chris
  • Kostryzhev, Andrii
Abstract

<jats:p>Novel steel microalloyed with 0.73 (Cr + V + Nb) has been subjected to thermomechanical processing (TMP) with varying parameters to simultaneously maximise the steel strength and ductility. Optical and electron microscopy studies coupled with uniaxial tensile testing were carried out to analyse the processing-microstructure-properties relationship. For the suggested steel composition, the simultaneously highest yield stress (960 MPa), ultimate tensile strength (1100 MPa), and elongation to failure (25%) were achieved following simulated coiling at 650 °C and holding for 30 min. The variation in the finish rolling temperature affects the ferrite grain size and the ratio of precipitates formed in austenite and ferrite. If a significant amount of solute is consumed for precipitation in austenite and during subsequent growth of strain-induced precipitates, then a lower fraction of interphase and random precipitates forms in ferrite resulting in a lower strength. Extended time at a simulated coiling temperature resulted in the growth of interphase precipitates and precipitation of random ones in ferrite. Fine tuning of TMP parameters is required to maximise the contribution to strength arising from different microstructural features.</jats:p>

Topics
  • impedance spectroscopy
  • grain
  • grain size
  • strength
  • steel
  • precipitate
  • precipitation
  • electron microscopy
  • random
  • tensile strength
  • ductility