Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Oliveira Neves, Guilherme

  • Google
  • 3
  • 5
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Simulation of the Influence of the Radial Graded Porosity Distribution on Elastic Modulus of γ/β Phase Ti-Based Alloy Foams for Bone Implant1citations
  • 2022Carbon Structures and Tribological Properties of Fe-C-SiC Self-Lubricating Metal Matrix Composites Prepared with α/β-SiC Polytypes8citations
  • 2020Study of the Effect of the Floating Die Compaction on Mechanical Properties of Titanium Foams4citations

Places of action

Chart of shared publication
Aguilar, Claudio
1 / 14 shared
Barbieri, Flavio De
1 / 1 shared
Pio, Edgar
1 / 2 shared
González, Daniel
1 / 2 shared
Alfonso, Ismeli
1 / 7 shared
Chart of publication period
2023
2022
2020

Co-Authors (by relevance)

  • Aguilar, Claudio
  • Barbieri, Flavio De
  • Pio, Edgar
  • González, Daniel
  • Alfonso, Ismeli
OrganizationsLocationPeople

article

Study of the Effect of the Floating Die Compaction on Mechanical Properties of Titanium Foams

  • Oliveira Neves, Guilherme
Abstract

<jats:p>Titanium (Ti) and its alloys are used for biomedical applications because of their high resistance to corrosion, good strength-to-weight ratio, and high fatigue resistance. However, a problem that compromises the performance of the material is the mismatch between Young’s modulus of Ti and the bone, which brings about stress shielding. One strategy that has been investigated to reduce this difference is the manufacture of Ti-based foams, using powder metallurgy (PM) methods, such as the space-holder technique. However, in the uniaxial compaction, both non-uniform density distribution and mechanical properties remain because of the compaction method. This work studies the influence of compaction by adopting a floating-action die related to a single-action die (SAD), on the density of green and sintered Ti foams with porosities around 50 vol.% characterized by optical microscopy, ultrasound analysis, compression tests, and microhardness. The compaction process employing a floating-action die generates Ti foams with a higher density up to 10% with more control of the spacer particle added compared to the single-action die. Furthermore, compaction method has no relevant effect on microhardness and Young’s modulus, which allows getting better consolidated samples with elastic modules similar to those of human bone.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • corrosion
  • strength
  • fatigue
  • compression test
  • titanium
  • optical microscopy