Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Farkas, Manuel Andreas

  • Google
  • 1
  • 2
  • 25

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020A study on the stability fields of arc plasma in the hpsr process25citations

Places of action

Chart of shared publication
Zarl, Michael Andreas
1 / 4 shared
Schenk, Johannes
1 / 46 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Zarl, Michael Andreas
  • Schenk, Johannes
OrganizationsLocationPeople

article

A study on the stability fields of arc plasma in the hpsr process

  • Farkas, Manuel Andreas
  • Zarl, Michael Andreas
  • Schenk, Johannes
Abstract

<p>One of the major challenges for Europe's future steel production will be minimizing the inherent process emissions in the production of crude steel based on iron ores. In this case, mainly the reduction of CO2 emissions is a focus. One promising process to overcome these problems is the hydrogen plasma smelting reduction (HPSR) process. This process has been studied for several years already at the Chair of Ferrous Metallurgy at Montanuniversitaet Leoben. The work presented focused on the stability of plasma arcs in the DC transferred arc system of the HPSR process. The stable operating plasma arc is of utmost importance for the future development of the process. The major objective is the definition of the most favorable conditions for this kind of arc. Therefore, tests were conducted to define fields of a stable operating plasma arc for multiple gas compositions and process variables. For several gas compositions of argon, nitrogen, argon/nitrogen, argon/hydrogen and nitrogen/hydrogen, fields of stability were measured and defined. Besides, the major influencing parameters and trends for the fields of stability were evaluated and are shown in this work.</p>

Topics
  • impedance spectroscopy
  • Nitrogen
  • steel
  • Hydrogen
  • iron