People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Uhe, Johanna
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Numerical investigation of rotational friction welding for C22.8 - 41Cr4 joints using a substitute model
- 2024Prevention of scaling by means of recycled process waste gases
- 2023KNN-Entwicklung in der Halbwarmumformung/ANN development in semi-hot forming
- 2023Investigation of the joining zone formation of impact extruded hybrid components by varied forming sequence and partial cooling
- 2023Investigation of the joining zone formation of impact extruded hybrid components by varied forming sequence and partial coolingcitations
- 2023Modelling failure of joining zones during forming of hybrid parts
- 2022Comparison of the Joining Zone Development of Hybrid Semi-Finished Products after Different Extrusion Processes
- 2022Investigations on Additively Manufactured Stainless Bearingscitations
- 2022Tailored Forming of hybrid bulk metal components
- 2022Tailored Forming: Drucküberlagertes Warmfließpressen
- 2021Joining zone evaluation of hybrid semi-finished products after backward can extrusion
- 2021Numerical evaluation of forging process designs of a hybrid co-extruded demonstrator consisting of steel and aluminium.
- 2021Influence of degree of deformation on welding pore reduction in high-carbon steelscitations
- 2021Process chain for the manufacture of hybrid bearing bushingscitations
- 2021Challenges in the Forging of Steel-Aluminum Bearing Bushings
- 2021Contact Geometry Modification of Friction-Welded Semi-Finished Products to Improve the Bonding of Hybrid Componentscitations
- 2020Characterization and modeling of intermetallic phase formation during the joining of aluminum and steel in analogy to co-extrusion
- 2020Characterization and modeling of intermetallic phase formation during the joining of aluminum and steel in analogy to co-extrusioncitations
- 2020Numerical investigations regarding a novel process chain for the production of a hybrid bearing bushingcitations
- 2020Lateral angular co-extrusioncitations
- 2020Lateral angular co-extrusion: Geometrical and mechanical properties of compound profiles
- 2019Numerical modeling of the development of intermetallic layers between aluminium and steel during co-extrusioncitations
- 2017Mechanical properties of co-extruded aluminium-steel compounds
Places of action
Organizations | Location | People |
---|
article
Lateral angular co-extrusion
Abstract
A novel co-extrusion process for the production of coaxially reinforced hollow profiles has been developed. Using this process, hybrid hollow profiles made of the aluminum alloy EN AW-6082 and the case-hardening steel 20MnCr5 (AISI 5120) were produced, which can be forged into hybrid bearing bushings by subsequent die forging. For the purpose of co-extrusion, a modular tooling concept was developed where steel tubes made of 20MnCr5 are fed laterally into the tool. This LACE (lateral angular co-extrusion) process allows for a variation of the volume fraction of the reinforcement by using steel tubes with different wall thicknesses, which enabled the production of compound profiles having reinforcement contents of either 14 vol.% or 34 vol.%. The shear strength of the bonding area of these samples was determined in push-out tests. Additionally, mechanical testing of segments of the hybrid profiles using shear compression tests was employed to provide information about the influence of different bonding mechanisms on the strength of the composite zone.