Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kádár, Csilla

  • Google
  • 2
  • 4
  • 7

Budapest University of Technology and Economics

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Mechanical and Degradation Behavior of Zinc‐Based Biodegradable Metal Foams2citations
  • 2020Annealing-Induced Changes in the Microstructure and Mechanical Response of a Cu Nanofoam Processed by Dealloying5citations

Places of action

Chart of shared publication
Gorejová, Radka
1 / 7 shared
Oriňaková, Renata
1 / 1 shared
Orbulov, Imre Norbert
1 / 2 shared
Kubelka, Pierre
1 / 1 shared
Chart of publication period
2024
2020

Co-Authors (by relevance)

  • Gorejová, Radka
  • Oriňaková, Renata
  • Orbulov, Imre Norbert
  • Kubelka, Pierre
OrganizationsLocationPeople

article

Annealing-Induced Changes in the Microstructure and Mechanical Response of a Cu Nanofoam Processed by Dealloying

  • Kádár, Csilla
Abstract

<jats:p>Cu nanoporous foams are promising candidates for use as an anode material for advanced lithium ion batteries. In this study, Cu nanofoam was processed from pack-cemented bulk material via dealloying. In the as-processed Cu nanofoam, the average ligament size was ~105 nm. The hardness in this initial state was ~2 MPa, and numerous cracks were observed in the indentation pattern obtained after hardness testing, thus indicating the low mechanical strength of the material. Annealing for 6 h under an Ar atmosphere at 400 °C was shown to result in crystalline coarsening and a reduction in the probability of twin faulting in the ligaments. Simultaneously, the junctions of the ligaments became stronger and hence more difficult to crack. This study demonstrates that moderate heat treatment under Ar can improve the resistance against crack propagation in Cu nanofoam without a large change in the ligament size and the surface oxide content, which can thus influence the electrochemical performance of the material in battery applications.</jats:p>

Topics
  • microstructure
  • surface
  • crack
  • strength
  • hardness
  • Lithium
  • annealing
  • hardness testing