Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bellmann, Jörg

  • Google
  • 32
  • 36
  • 250

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (32/32 displayed)

  • 2021Improving and monitoring the magnetic pulse welding process between dissimilar metals ; Verbessern und Beobachten des Magnetpulsschweißprozesses von verschiedenartigen Metallen12citations
  • 2021Interface Formation during Collision Welding of Aluminumcitations
  • 2021Influence of copper interlayers on the magnetic pulse welding process between aluminum and steel9citations
  • 2020Interface formation during collision welding of aluminum17citations
  • 2020Improving and Monitoring the Magnetic Pulse Welding Process between Dissimilar Metalscitations
  • 2020Particle Ejection by Jetting and Related Effects in Impact Welding Processes17citations
  • 2020Joining dissimilar thin-walled tubes by magnetic pulse welding36citations
  • 2019Einfluss der Wandstärke auf das Umformverhalten und das Schweißergebnis beim Magnetpulsschweißen ; Effect of the wall thickness on the forming behavior and welding result during magnetic pulse welding3citations
  • 2019Experimental study on the magnetic pulse welding process of large aluminum tubes on steel rods7citations
  • 2019Thermal effects in dissimilar magnetic pulse welding ; Thermische Effekte beim Magnetpulsschweißen von Mischverbindungen17citations
  • 2019Magnetic pulse welding of tubular parts ; Magnetpulsschweißen von Rohren2citations
  • 2019Effect of the forming behavior on the impact flash during magnetic pulse welding of tubescitations
  • 2019Thermal effects in dissimilar magnetic pulse welding17citations
  • 2018Influence of the flyer kinetics on magnetic pulse welding of tubes51citations
  • 2018Effects of reactive interlayers in magnetic pulse weldingcitations
  • 2018Parameter identification for magnetic pulse welding applications11citations
  • 2018Effects of reactive interlayers in magnetic pulse welding ; Einfluss von reaktiven Zwischenschichten beim Magnetpulsschweißencitations
  • 2017Measurement of collision conditions in magnetic pulse welding processes ; Messung der Kollisionsbedingungen beim Magnetpulsschweißen18citations
  • 2017Magnetic pulse welding of tubes: ensuring the stability of the inner diametercitations
  • 2017Magnetic pulse welding: solutions for process monitoring within pulsed magnetic fieldscitations
  • 2017Targeted weld seam formation and energy reduction at magnetic pulse welding (MPW) ; Gezielte Nahteinstellung und Energiereduktion beim Magnetpulsschweißen5citations
  • 2017Neue Möglichkeiten zur Prozessüberwachung und Effizienzsteigerung beim Magnetpulsschweißencitations
  • 2016Measurement and analysis technologies for magnetic pulse welding: Established methods and new strategies28citations
  • 2016Magnetic pulse welding of dissimilar metals in tube-to-tube configurationcitations
  • 2016Magnetic pulse welding of tubes: Ensuring the stability of the inner diameter ; Magnetpulsschweißen von Rohren: Sicherstellung eines stabilen Innendurchmesserscitations
  • 2016Effects of Surface Coatings on the Joint Formation During Magnetic Pulse Welding in Tube-to-Cylinder Configurationcitations
  • 2016Magnetic pulse welding: Solutions for process monitoring within pulsed magnetic fields ; Magnetpulsschweißen: Lösungen für die Prozessüberwachung in gepulsten Magnetfelderncitations
  • 2016Influence of the wall thicknesses on the joint quality during magnetic pulse welding in tube-to-tube configurationcitations
  • 2016Magnetic pulse welding: Joining within microseconds - high strength forever ; Magnetpulsschweißen: Fügen in Mikrosekunden - Hohe Festigkeit für immercitations
  • 2016Influence of selected coatings on the welding result during Magnetic Pulse Welding (MPW) ; Einfluss ausgewählter Bauteilbeschichtungen auf das Fügeergebnis beim elektromagnetischen Pulsfügencitations
  • 2016Workpiece positioning during magnetic pulse welding of aluminum-steel jointscitations
  • 2015LBW of steel-aluminum corner joints generated by selected laser material meltingcitations

Places of action

Chart of shared publication
Wagner, Markus
3 / 8 shared
Schulze, Sebastian
22 / 29 shared
Zimmermann, Martina
3 / 162 shared
Schettler, Sebastian
4 / 8 shared
Beyer, Eckhard
29 / 84 shared
Leyens, Christoph
5 / 430 shared
Standfuß, Jens
3 / 19 shared
Groche, Peter
3 / 25 shared
Schumacher, Eugen
3 / 3 shared
Böhme, Marcus
3 / 9 shared
Lueg-Althoff, Jörn
27 / 38 shared
Niessen, Benedikt
3 / 3 shared
Wagner, Martin Franz-Xaver
3 / 31 shared
Tekkaya, A. Erman
15 / 34 shared
Böhm, Stefan
3 / 22 shared
Kroll, Lothar
1 / 273 shared
Nestler, Daisy Julia
1 / 58 shared
Roder, Kristina
1 / 3 shared
Tekkaya, Ae
13 / 822 shared
Gies, Soeren
22 / 64 shared
Hahn, Marlon
7 / 59 shared
Dittrich, Steffen
1 / 1 shared
Überschaer, F.
1 / 1 shared
Schulze, S.
1 / 22 shared
Beyer, E.
1 / 58 shared
Beyer, Ecckhard
1 / 1 shared
Goebel, Gunther
1 / 5 shared
Göbel, Gunther
1 / 8 shared
Schultze, Sebastian
1 / 1 shared
Schilling, B.
1 / 3 shared
Kirchhoff, Gunter
1 / 3 shared
Weddeling, Christian
1 / 27 shared
Lorenz, Amanda Leigh
1 / 1 shared
Göbel, Günther
1 / 1 shared
Brenner, Berndt
1 / 13 shared
Jahn, Axel
1 / 7 shared
Chart of publication period
2021
2020
2019
2018
2017
2016
2015

Co-Authors (by relevance)

  • Wagner, Markus
  • Schulze, Sebastian
  • Zimmermann, Martina
  • Schettler, Sebastian
  • Beyer, Eckhard
  • Leyens, Christoph
  • Standfuß, Jens
  • Groche, Peter
  • Schumacher, Eugen
  • Böhme, Marcus
  • Lueg-Althoff, Jörn
  • Niessen, Benedikt
  • Wagner, Martin Franz-Xaver
  • Tekkaya, A. Erman
  • Böhm, Stefan
  • Kroll, Lothar
  • Nestler, Daisy Julia
  • Roder, Kristina
  • Tekkaya, Ae
  • Gies, Soeren
  • Hahn, Marlon
  • Dittrich, Steffen
  • Überschaer, F.
  • Schulze, S.
  • Beyer, E.
  • Beyer, Ecckhard
  • Goebel, Gunther
  • Göbel, Gunther
  • Schultze, Sebastian
  • Schilling, B.
  • Kirchhoff, Gunter
  • Weddeling, Christian
  • Lorenz, Amanda Leigh
  • Göbel, Günther
  • Brenner, Berndt
  • Jahn, Axel
OrganizationsLocationPeople

article

Particle Ejection by Jetting and Related Effects in Impact Welding Processes

  • Groche, Peter
  • Schumacher, Eugen
  • Böhme, Marcus
  • Tekkaya, Ae
  • Bellmann, Jörg
  • Lueg-Althoff, Jörn
  • Niessen, Benedikt
  • Wagner, Martin Franz-Xaver
  • Beyer, Eckhard
  • Leyens, Christoph
  • Böhm, Stefan
Abstract

<jats:p>Collision welding processes are accompanied by the ejection of a metal jet, a cloud of particles (CoP), or both phenomena, respectively. The purpose of this study is to investigate the formation, the characteristics as well as the influence of the CoP on weld formation. Impact welding experiments on three different setups in normal ambient atmosphere and under vacuum-like conditions are performed and monitored using a high-speed camera, accompanied by long-term exposures, recordings of the emission spectrum, and an evaluation of the CoP interaction with witness pins made of different materials. It was found that the CoP formed during the collision of the joining partners is compressed by the closing joining gap and particularly at small collision angles it can reach temperatures sufficient to melt the surfaces to be joined. This effect was proved using a tracer material that is detectable on the witness pins after welding. The formation of the CoP is reduced with increasing yield strength of the material and the escape of the CoP is hindered with increasing surface roughness. Both effects make welding with low-impact velocities difficult, whereas weld formation is facilitated using smooth surfaces and a reduced ambient pressure under vacuum-like conditions. Furthermore, the absence of surrounding air eases the process observation since exothermic oxidation reactions and shock compression of the gas are avoided. This also enables an estimation of the temperature in the joining gap, which was found to be more than 5600 K under normal ambient pressure.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • experiment
  • melt
  • strength
  • yield strength
  • joining