People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hussain, Ghulam
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2022Parametric Study and Optimization of End-Milling Operation of AISI 1522H Steel Using Definitive Screening Design and Multi-Criteria Decision-Making Approachcitations
- 2022Machining of Carbon Steel under Aqueous Environment: Investigations into Some Performance Measurescitations
- 2022Process parameter optimization for Fused Filament Fabrication additive manufacturing of PLA/PHA biodegradable polymer blendcitations
- 2022Computational investigation of the dynamic response of silicon carbide ceramic under impact loading
- 2022Electronic and optical properties of InAs/InAs0.625Sb0.375 superlattices and their application for far-infrared detectorscitations
- 2022Prediction of properties of friction stir spot welded joints of AA7075-T651/Ti-6Al-4V alloy using machine learning algorithmscitations
- 2022Investigation on Mechanical and Durability Properties of Concrete Mixed with Silica Fume as Cementitious Material and Coal Bottom Ash as Fine Aggregate Replacement Materialcitations
- 2022Supply Chain Modelling of the Automobile Multi-Stage Production Considering Circular Economy by Waste Management Using Recycling and Reworking Operationscitations
- 2021Impact Toughness of Hybrid Carbon Fiber-PLA/ABS Laminar Composite Produced through Fused Filament Fabricationcitations
- 2021The experimental study of CFRP interlayer of dissimilar joint AA7075-T651/Ti-6Al-4V alloys by friction stir spot welding on mechanical and microstructural propertiescitations
- 2021Fuzzy Logic-Based Prediction of Drilling-Induced Temperatures at Varying Cutting Conditions along with Analysis of Chips Morphology and Burrs Formation
citations
- 2021An experimental study on interfacial fracture toughness of 3-D printed ABS/CF-PLA composite under mode I, II, and mixed-mode loadingcitations
- 2021Strain Wave Analysis in Carbon-Fiber-Reinforced Composites subjected to Drop Weight Impact Test using ANSYS®citations
- 2021Mechanical properties of an additive manufactured CF-PLA/ABS hybrid composite sheetcitations
- 2021Friction stir spot welding of AA5052 with additional carbon fiber-reinforced polymer composite interlayercitations
- 2020Thermoelastic Investigation of Carbon-Fiber-Reinforced Composites Using a Drop-Weight Impact Testcitations
- 2020Biocompatibility and corrosion resistance of metallic biomaterialscitations
- 2020Experimental Investigations on the Effects of Rotational Speed on Temperature and Microstructure Variations in Incremental Forming of T6- Tempered and Annealed AA2219 Aerospace Alloycitations
- 2017Development of a TiC/Cr 23 C 6 composite coating on a 304 stainless steel substrate through a tungsten inert gas processcitations
Places of action
Organizations | Location | People |
---|
article
Experimental Investigations on the Effects of Rotational Speed on Temperature and Microstructure Variations in Incremental Forming of T6- Tempered and Annealed AA2219 Aerospace Alloy
Abstract
<jats:p>This research work primarily focused on investigating the effects of changing rotational speed on the forming temperature and microstructure during incremental sheet metal forming (ISF) of AA-2219-O and AA-2219-T6 sheets. Tool rotational speed was varied in the defined range (50–3000 rpm). The tool feed rate of 3000 mm/min and step size of 0.3 mm with spiral tool path were kept fixed in the tests. The sheets were formed into pyramid shapes of 45° draw angle, with the hemispherical end forming tool of 12 mm diameter. While the sheets were forming, the temperature variation due to friction at the sheet–tool contact zone was recorded, using a non-contact laser projected infrared temperature sensor. It was observed that the temperature rising rate for the T6 sheet during ISF is higher as compared to the annealed sheet, thereby showing that the T6 tempered sheet offers higher friction than the annealed sheet. Due to this reason, the T6 tempered sheet fails to achieve the defined forming depth of 25 mm when the rotational speed exceeds 2000 rpm. The effects of rotational speed and associated rise in the temperature were examined on the microstructure, using the scanning electron microscopic (SEM). The results reveal that the density of second phase particles reduces with increasing speed reasoning to corresponding temperature rise. However, the particle size in both tempers of AA2219 received a slight change and showed a trivial response to an increase in the rotational speed.</jats:p>