Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Knoop, Daniel

  • Google
  • 2
  • 4
  • 37

Institut der Wirtschaft Thüringens

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Additive Fertigung und Eigenschaften der metastabilen Titanlegierung Ti-5Al-5Mo-5V-3Crcitations
  • 2020A Tailored AlSiMg Alloy for Laser Powder Bed Fusion37citations

Places of action

Chart of shared publication
Schubert, Frank
1 / 7 shared
Kroll, Lothar
1 / 273 shared
Haller, Jonas
1 / 1 shared
Toenjes, Anastasiya
1 / 1 shared
Chart of publication period
2023
2020

Co-Authors (by relevance)

  • Schubert, Frank
  • Kroll, Lothar
  • Haller, Jonas
  • Toenjes, Anastasiya
OrganizationsLocationPeople

article

A Tailored AlSiMg Alloy for Laser Powder Bed Fusion

  • Knoop, Daniel
Abstract

<jats:p>The majority of aluminum alloys used for laser powder bed fusion are based on the aluminum–silicon system, particularly alloys containing 7 to 12 wt.% silicon and less than 1 wt.% magnesium. Silicon has a beneficial influence on melt viscosity during casting and laser additive manufacturing and prevents the formation of cracks. This study focused on the development of a new AlSi3.5Mg2.5 alloy for laser powder bed fusion with a Mg-Si content above 1.85 wt.% Mg2Si, which is the solubility limit of the α-aluminum matrix, and a subsequent heat treatment to adjust the mechanical properties with a wide range of strength and ductility values. The characterization of the microstructure was conducted by optical microscopy, scanning electron microscopy, transmission electron microscopy, and differential scanning calorimetry. The mechanical properties were determined by tensile tests and additional tight radius bending tests. The newly developed alloy was compared with AlSi10Mg and Scalmalloy®. AlSi3.5Mg2.5 offers higher strength and ductility than AlSi10Mg, at comparable material costs. The mechanical properties can be adjusted in a wide range of values using a single step heat treatment. After direct ageing, the samples exhibited a ultimate tensile strength (UTS) of 484 ± 1 MPa and an elongation at break of 10.5% ± 1.3%, while after soft annealing, they exhibited a UTS of 179 ± 2 MPa and an elongation at break of 25.6% ± 0.9%.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • scanning electron microscopy
  • Magnesium
  • Magnesium
  • melt
  • aluminium
  • laser emission spectroscopy
  • crack
  • strength
  • selective laser melting
  • transmission electron microscopy
  • bending flexural test
  • Silicon
  • differential scanning calorimetry
  • casting
  • aging
  • annealing
  • tensile strength
  • optical microscopy
  • ductility
  • melt viscosity