Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Drozdová, Ľubomíra

  • Google
  • 2
  • 9
  • 13

Technical University of Ostrava

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Investigation of Fe–C–Cr and Fe–C–Cr–Ni-based systems with the use of DTA and HT-LSCM methods4citations
  • 2020The Relationship between Nil-Strength Temperature, Zero Strength Temperature and Solidus Temperature of Carbon Steels9citations

Places of action

Chart of shared publication
Francová, Hana
1 / 2 shared
Novák, Vlastimil
1 / 2 shared
Zlá, Simona
1 / 5 shared
Bernhard, Michael
1 / 1 shared
Machů, Mario
1 / 1 shared
Bernhard, Christian
1 / 53 shared
Smetana, Bedřich
1 / 14 shared
Řeháčková, Lenka
1 / 1 shared
Presoly, Peter
1 / 25 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Francová, Hana
  • Novák, Vlastimil
  • Zlá, Simona
  • Bernhard, Michael
  • Machů, Mario
  • Bernhard, Christian
  • Smetana, Bedřich
  • Řeháčková, Lenka
  • Presoly, Peter
OrganizationsLocationPeople

article

The Relationship between Nil-Strength Temperature, Zero Strength Temperature and Solidus Temperature of Carbon Steels

  • Drozdová, Ľubomíra
Abstract

<jats:p>The nil-strength temperature, zero strength temperature and solidus temperature are significant parameters with respect to the processes of melting, casting and welding steels. With the use of physical tests performed on the universal plastometer Gleeble 3800 and calculations in the IDS software, the nil-strength temperatures, zero strength temperatures and solidus temperatures of nine non-alloy carbon steels have been determined. Apart from that, solidus temperatures were also calculated by the use of four equations expressing a mathematical relation of this temperature to the chemical composition of the investigated steels. The nil-strength and zero strength temperatures and the solidus temperatures decreased with increasing carbon content in the investigated steels. Much higher content of sulfur in free-cutting steel resulted in a decrease of all the temperatures investigated. The zero strength temperatures determined by calculation in the IDS software during solidification were approximately 43–85 °C higher than the nil-strength temperatures determined experimentally during heating of the investigated steels. The linear dependence of experimentally measured nil-strength temperature on the calculated zero strength temperature for the investigated steels was determined. Based on regression analyses, there were determined mathematical relations which described with high accuracy a linear dependence of the nil-strength and zero strength temperatures on the solidus temperature of the investigated steels.</jats:p>

Topics
  • Carbon
  • strength
  • casting
  • solidification
  • carbon content
  • machining steel