People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Torres, Yadir
Universidad de Sevilla
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Electrical impedance characterization and modelling of Ti‐Β implants
- 2023Ti6Al4V coatings on titanium samples by sputtering techniques: Microstructural and mechanical characterizationcitations
- 2023Limits of powder metallurgy to fabricate porous Ti35Nb7Zr5Ta samples for cortical bone replacementscitations
- 2023Thermal and tribo-mechanical properties of high-performance poly(etheretherketone)/reduced graphene oxide nanocomposite coatings prepared by electrophoretic depositioncitations
- 2022Fabrication and Characterization of Bioactive Gelatin–Alginate–Bioactive Glass Composite Coatings on Porous Titanium Substratescitations
- 2022Antimicrobial and Antibiofilm Effect of 4,4′-Dihydroxy-azobenzene against Clinically Resistant Staphylococcicitations
- 2021Effect of the Processing Parameters on the Porosity and Mechanical Behavior of Titanium Samples with Bimodal Microstructure Produced via Hot Pressingcitations
- 2020Porous Titanium Cylinders Obtained by the Freeze-Casting Technique: Influence of Process Parameters on Porosity and Mechanical Behaviorcitations
- 2020Characterization and Monitoring of Titanium Bone Implants with Impedance Spectroscopycitations
- 2020Characterization and Monitoring of Titanium Bone Implants with Impedance Spectroscopycitations
- 2020Influence of the Test Configuration and Temperature on the Mechanical Behaviour of WC-Cocitations
- 2020Surface Modification of Porous Titanium Discs Using Femtosecond Laser Structuringcitations
- 2020Surface Modification of Porous Titanium Discs Using Femtosecond Laser Structuringcitations
- 2019Fracture Toughness of Cemented Carbides Obtained by Electrical Resistance Sinteringcitations
- 2018Surface modification of Ti-6Al-4V alloys manufactured by selective laser melting: Microstructural and tribo-mechanical characterizationcitations
- 2017A new family of cermets: Chemically complex but microstructurally simplecitations
- 2016Electrophoretic Deposition of PEEK/45S5 Bioactive Glass Coating on Porous Titanium Substrate: Influence of Processing Conditions and Porosity Parameterscitations
- 2015Toughening of complete solid solution cermets by graphite additioncitations
Places of action
Organizations | Location | People |
---|
article
Influence of the Test Configuration and Temperature on the Mechanical Behaviour of WC-Co
Abstract
<jats:p>In this work, the effect of the test configuration and temperature on the mechanical behaviour of cemented carbides (WC-Co) with different carbide grain sizes (dWC) and cobalt volume fractions (VCo), implying different binder mean free paths (λCo), was studied. The mechanical strength was measured at 600 °C with bar-shaped specimens subjected to uniaxial four-point bending (4PB) tests and with disc specimens subjected to biaxial ball-on-three-balls (B3B) tests. The results were analysed within the frame of the Weibull theory and compared with strength measurements performed at room temperature under the same loading conditions. A mechanical degradation greater than 30% was observed when the samples were tested at 600 °C due to oxidation phenomena, but higher Weibull moduli were obtained as a result of narrower defect size distributions. A fractographic analysis was conducted with broken specimens from each test configuration. The number of fragments (Nf) and the macroscopic fracture surface were related to the flexural strength and fracture toughness of WC-Co. For a given number of fragments, higher mechanical strength values were always obtained for WC-Co grades with higher KIc. The observed differences were discussed based on a linear elastic fracture mechanics (LEFM) model, taking into account the effect of the temperature and microstructure of the cemented carbides on the mechanical strength.</jats:p>