People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kubit, Andrzej
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2024Analysis of the Influence of Manufacturing Technology on Selected Static, Fatigue and Morphological Properties of CFRP Composites
- 2024AA5754–Al2O3 Nanocomposite Prepared by Friction Stir Processing: Microstructural Evolution and Mechanical Performancecitations
- 2024Fatigue properties of spot joints of metal-plastic composites with DP 800 steel prepared by ultrasound resistance spot weldingcitations
- 2024Effects of forming techniques on residual stresses in stiffening ribs of sandwich panelscitations
- 2021Surface Finish Analysis in Single Point Incremental Sheet Forming of Rib-Stiffened 2024-T3 and 7075-T6 Alclad Aluminium Alloy Panelscitations
- 2020Strength Analysis of a Rib-Stiffened GLARE-Based Thin-Walled Structurecitations
- 2020Residual Stresses and Surface Roughness Analysis of Truncated Cones of Steel Sheet Made by Single Point Incremental Formingcitations
Places of action
Organizations | Location | People |
---|
article
Residual Stresses and Surface Roughness Analysis of Truncated Cones of Steel Sheet Made by Single Point Incremental Forming
Abstract
<jats:p>The dimensional accuracy and mechanical properties of metal components formed by the Single Point Incremental Forming (SPIF) process are greatly affected by the prevailing state of residual stress. An X-ray diffraction method has been applied to achieve an understanding of the residual stress formation caused by the SPIF process of deep drawing a quality steel sheet drawpiece. The test object for an analysis of residual stress distribution was a conical truncated drawpiece with a slope angle of 71° and base diameter of the cone of 65 mm. The forming process has been carried out on a 3-axis HAAS TM1P milling machine. Uniaxial tensile tests have been carried out in the universal tensile testing machine to characterize the material tested. It was found that the inner surface of the drawpiece revealed small linear grooves as a result of the interaction of the tool tip with the workpiece. By contrast, the outer surface was free of grooves which are a source of premature cracking. The stress profile exhibits a nonlinear distribution due to different strengthening of the material along the generating line of the truncated conical drawpiece. The SPIF parts experienced a maximum residual stress value of about 84.5 MPa.</jats:p>