Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Engler, Tom

  • Google
  • 1
  • 7
  • 27

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Effect of Friction Stir Processing on Microstructural, Mechanical, and Corrosion Properties of Al-Si12 Additive Manufactured Components27citations

Places of action

Chart of shared publication
Moeini, Ghazal
1 / 10 shared
Jung, Ben
1 / 2 shared
Sajadifar, Seyed Vahid
1 / 13 shared
Niendorf, Thomas
1 / 301 shared
Oechsner, Matthias
1 / 23 shared
Böhm, Stefan
1 / 22 shared
Heider, Ben
1 / 2 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Moeini, Ghazal
  • Jung, Ben
  • Sajadifar, Seyed Vahid
  • Niendorf, Thomas
  • Oechsner, Matthias
  • Böhm, Stefan
  • Heider, Ben
OrganizationsLocationPeople

article

Effect of Friction Stir Processing on Microstructural, Mechanical, and Corrosion Properties of Al-Si12 Additive Manufactured Components

  • Engler, Tom
  • Moeini, Ghazal
  • Jung, Ben
  • Sajadifar, Seyed Vahid
  • Niendorf, Thomas
  • Oechsner, Matthias
  • Böhm, Stefan
  • Heider, Ben
Abstract

<jats:p>Additive manufacturing (AM) is an advanced manufacturing process that provides the opportunity to build geometrically complex and highly individualized lightweight structures. Despite its many advantages, additively manufactured components suffer from poor surface quality. To locally improve the surface quality and homogenize the microstructure, friction stir processing (FSP) technique was applied on Al-Si12 components produced by selective laser melting (SLM) using two different working media. The effect of FSP on the microstructural evolution, mechanical properties, and corrosion resistance of SLM samples was investigated. Microstructural investigation showed a considerable grain refinement in the friction stirred area, which is due to the severe plastic deformation and dynamic recrystallization of the material in the stir zone. Micro-hardness measurements revealed that the micro-hardness values of samples treated using FSP are much lower compared to SLM components in the as-built condition. This reduction of hardness values in samples treated with FSP can be explained by the dissolution of the very fine Si-phase network, being characteristic for SLM samples, during FSP. Surface topography also demonstrated that the FSP results in the reduction of surface roughness and increases the homogeneity of the SLM microstructure. Decreased surface roughness and grain size refinement in combination with the dissolved Si-phase network of the FSP treated material result in considerable changes in corrosion behavior. This work addresses the corrosion properties of surface treated additive manufactured Al-Si12 by establishing adequate microstructure-property relationships. The corrosion behavior of SLM-manufactured Al-Si12 alloys is shown to be improved by FSP-modification of the surfaces.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • grain
  • corrosion
  • grain size
  • phase
  • hardness
  • selective laser melting
  • recrystallization