Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Borik, Mikhail

  • Google
  • 1
  • 11
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Structure and Physical Properties of Ceramic Materials Based on ZrO2-Sc2O3 for SOFC Electrolytic Membranes Obtained from Powders of Melted Solid Solutions with a Similar Composition4citations

Places of action

Chart of shared publication
Buzaeva, Ekaterina
1 / 1 shared
Kyashkin, Vladimir
1 / 2 shared
Kulebyakin, Alexey
1 / 1 shared
Milovich, Filipp
1 / 6 shared
Lomonova, Elena
1 / 2 shared
Kuritsyna, Irina
1 / 1 shared
Larina, Nataliya
1 / 1 shared
Myzina, Valentina
1 / 1 shared
Ryabochkina, Polina
1 / 1 shared
Tabachkova, Nataliya
1 / 1 shared
Zakharov, Denis
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Buzaeva, Ekaterina
  • Kyashkin, Vladimir
  • Kulebyakin, Alexey
  • Milovich, Filipp
  • Lomonova, Elena
  • Kuritsyna, Irina
  • Larina, Nataliya
  • Myzina, Valentina
  • Ryabochkina, Polina
  • Tabachkova, Nataliya
  • Zakharov, Denis
OrganizationsLocationPeople

article

Structure and Physical Properties of Ceramic Materials Based on ZrO2-Sc2O3 for SOFC Electrolytic Membranes Obtained from Powders of Melted Solid Solutions with a Similar Composition

  • Buzaeva, Ekaterina
  • Kyashkin, Vladimir
  • Kulebyakin, Alexey
  • Milovich, Filipp
  • Lomonova, Elena
  • Kuritsyna, Irina
  • Larina, Nataliya
  • Myzina, Valentina
  • Ryabochkina, Polina
  • Tabachkova, Nataliya
  • Borik, Mikhail
  • Zakharov, Denis
Abstract

<jats:p>This paper presents the results of studying the phase composition, luminescent characteristics, and ionic conductivity of ceramic scandium-stabilized solid solutions of zirconium dioxide containing 9 and 10 mol% Sc2O3. Ceramic samples were prepared by sintering powders obtained by grinding melted solid solutions of the same composition. A comparative analysis of the obtained data with similar characteristics of single crystals has been carried out. Differences in the phase composition of ceramics and initial single crystals were found. The effect of the structure and properties of grain boundaries on the ionic conductivity of ceramic samples is discussed. It is shown that the differences in the ionic conductivity of ceramic samples and crystals are mainly due to changes in the structure and phase composition.</jats:p>

Topics
  • impedance spectroscopy
  • single crystal
  • grain
  • phase
  • grinding
  • zirconium
  • sintering
  • Scandium
  • zirconium dioxide