People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Guillon, Olivier
RWTH Aachen University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024Enabling High-Performance Hybrid Solid-State Batteries by Improving the Microstructure of Free-Standing LATP/LFP Composite Cathodes
- 2024Blacklight sintering of garnet-based composite cathodes
- 2024Enabling High-Performance Hybrid Solid-State Batteries by Improving the Microstructure of Free-Standing LATP/LFP Composite Cathodes.citations
- 2024Correlative characterization of plasma etching resistance of various aluminum garnetscitations
- 2024Correlative characterization of plasma etching resistance of various aluminum garnets
- 2024Delithiation-induced secondary phase formation in Li-rich cathode materials
- 2024Space charge governs the kinetics of metal exsolutioncitations
- 2024Direct Precursor Route for the Fabrication of LLZO Composite Cathodes for Solid‐State Batteries
- 2024Tooling in Spark Plasma Sintering Technology: Design, Optimization, and Applicationcitations
- 2023Role of Fe/Co Ratio in Dual Phase Ce0.8Gd0.2O2−δ–Fe3−xCoxO4 Composites for Oxygen Separationcitations
- 2023Kinetics and Pore Formation of the Sodium Metal Anode on NASICON‐Type Na$_{3.4}$ Zr$_2$Si$_{2.4}$P$_{0.6}$O$_{12}$ for Sodium Solid‐State Batteries
- 2023Enhanced metal exsolution at the non-polar (001) surfaces of multi-faceted epitaxial thin filmscitations
- 2023Creep and Superplasticity of Gadolinium-Doped Ceria Ceramics under AC Electric Current
- 2023Enabling metal substrates for garnet-based composite cathodes by laser sintering
- 2023Optimizing the Composite Cathode Microstructure in All‐Solid‐State Batteries by Structure‐Resolved Simulations
- 2023Oxide ceramic electrolytes for all-solid-state lithium batteries – cost-cutting cell design and environmental impactcitations
- 2022Rapid thermal processing of garnet-based composite cathodescitations
- 2022Kinetics and Pore Formation of the Sodium Metal Anode on NASICON‐Type Na$_{3.4}$ Zr$_2$Si$_{2.4}$P$_{0.6}$O$_{12}$ for Sodium Solid‐State Batteriescitations
- 2022Rapid thermal sintering of screen-printed LiCoO2 filmscitations
- 2021Optimization of sintering conditions for improved microstructural and mechanical properties of dense Ce0.8Gd0.2O2-δ-FeCo2O4 oxygen transport membranescitations
- 2021Injection Molding and Near-Complete Densification of Monolithic and Al2O3 Fiber-Reinforced Ti2AlC MAX Phase Compositescitations
- 2020The grain‐boundary resistance of CeO 2 ceramics: A combined microscopy‐spectroscopy‐simulation study of a dilute solutioncitations
- 2020Microstructure, ionic conductivity and mechanical properties of tape-cast Li1.5Al0.5Ti1.5P3O12 electrolyte sheetscitations
- 2019Topological optimization of patterned silicon anode by finite element analysiscitations
- 2011Constrained sintering of glass films: Microstructure evolution assessed through synchrotron computed microtomographycitations
- 2005New considerations about the fracture mode of PZT ceramicscitations
Places of action
Organizations | Location | People |
---|
article
Role of Fe/Co Ratio in Dual Phase Ce0.8Gd0.2O2−δ–Fe3−xCoxO4 Composites for Oxygen Separation
Abstract
<jats:p>Dual-phase membranes are increasingly attracting attention as a solution for developing stable oxygen permeation membranes. Ce0.8Gd0.2O2−δ–Fe3−xCoxO4 (CGO-F(3−x)CxO) composites are one group of promising candidates. This study aims to understand the effect of the Fe/Co-ratio, i.e., x = 0, 1, 2, and 3 in Fe3−xCoxO4, on microstructure evolution and performance of the composite. The samples were prepared using the solid-state reactive sintering method (SSRS) to induce phase interactions, which determines the final composite microstructure. The Fe/Co ratio in the spinel structure was found to be a crucial factor in determining phase evolution, microstructure, and permeation of the material. Microstructure analysis showed that all iron-free composites had a dual-phase structure after sintering. In contrast, iron-containing composites formed additional phases with a spinel or garnet structure which likely contributed to electronic conductivity. The presence of both cations resulted in better performance than that of pure iron or cobalt oxides. This demonstrated that both types of cations were necessary to form a composite structure, which then allowed sufficient percolation of robust electronic and ionic conducting pathways. The maximum oxygen flux is jO2 = 0.16 and 0.11 mL/cm2·s at 1000 °C and 850 °C, respectively, of the 85CGO-FC2O composite, which is comparable oxygen permeation flux reported previously.</jats:p>