People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bodner, Merit
Graz University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024In-situ and ex-situ monitoring of membrane degradationin polymer electrolyte fuel cells using advanced analytical techniques
- 2023Induced Hydrogen Crossover Accelerated Stress Test for PEM Water Electrolysis Cells
- 2023Ex-situ measurement of chemical membrane degradation using photometry
- 2023Mechanistic study of fast performance decay of Pt-Cu alloy based catalyst layers for polymer electrolyte fuel cells through electrochemical impedance spectroscopycitations
- 2023Mechanistic study of fast performance decay of PtCu alloy-based catalyst layers for polymer electrolyte fuel cells through electrochemical impedance spectroscopycitations
- 2023Surfactant doped polyaniline coatings for functionalized gas diffusion layers in low temperature fuel cellscitations
- 2023Analysis of PEM Water Electrolyzer Failure Due to Induced Hydrogen Crossover in Catalyst-Coated PFSA Membranescitations
- 2023Modeling of Catalyst Degradation in PEM Fuel Cells Applied to 3D Simulation
- 2023Effects of Catalyst Ink Storage on Polymer Electrolyte Fuel Cellscitations
- 2023Investigation of Gas Diffusion Layer Degradation in Polymer Electrolyte Fuel Cell Via Chemical Oxidationcitations
- 2022Derivate photometry as a method for the determination of fluorine emission rates in polymer electrolyte fuel cells
- 2022Colorimetric method for the determination of fluoride emission rates in polymer electrolyte fuel cells
- 2022Influence of electrode composition and operating conditions on the performance and the electrochemical impedance spectra of polymer electrolyte fuel cells
- 2019Structural Characterization of Membrane-Electrode-Assemblies in High Temperature Polymer Electrolyte Membrane Fuel Cellscitations
- 2017Determining the total fluorine emission rate in polymer electrolyte fuel cell effluent watercitations
Places of action
Organizations | Location | People |
---|
article
Analysis of PEM Water Electrolyzer Failure Due to Induced Hydrogen Crossover in Catalyst-Coated PFSA Membranes
Abstract
Polymer electrolyte membrane water electrolysis (PEMWE) is a leading candidate for the development of a sustainable hydrogen infrastructure. The heart of a PEMWE cell is represented by the membrane electrode assembly (MEA), which consists of a polymer electrolyte membrane (PEM) with catalyst layers (CLs), flow fields, and bipolar plates (BPPs). The weakest component of the system is the PEM, as it is prone to chemical and mechanical degradation. Membrane chemical degradation is associated with the formation of hydrogen peroxide due to the crossover of product gases (H<sub>2</sub> and O<sub>2</sub>). In this paper, membrane failure due to H<sub>2</sub> crossover was addressed in a membrane-focused accelerated stress test (AST). Asymmetric H<sub>2</sub>O and gas supply were applied to a test cell in OCV mode at two temperatures (60 °C and 80 °C). Electrochemical characterization at the beginning and at the end of testing revealed a 1.6-fold higher increase in the high-frequency resistance (HFR) at 80 °C. The hydrogen crossover was measured with a micro-GC, and the fluoride emission rate (FER) was monitored during the ASTs. A direct correlation between the FER and H<sub>2</sub> crossover was identified, and accelerated membrane degradation at higher temperatures was detected.