Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mughal, Waqas

  • Google
  • 2
  • 6
  • 19

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Mechanical and Biomimetic Characteristics of Bulk-Fill Resin Dental Composites Following Exposure in a Simulated Acidic Oral Environment5citations
  • 2023Influence of Operating and Electrochemical Parameters on PEMFC Performance: A Simulation Study14citations

Places of action

Chart of shared publication
Altaf, Noorulain
1 / 1 shared
Dahri, Waheed Murad
1 / 1 shared
Soomro, Imtiaz Ali
1 / 1 shared
Memon, Fida Hussain
1 / 2 shared
Khan, Muhammad Ali
1 / 8 shared
Ali, Wajid
1 / 3 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Altaf, Noorulain
  • Dahri, Waheed Murad
  • Soomro, Imtiaz Ali
  • Memon, Fida Hussain
  • Khan, Muhammad Ali
  • Ali, Wajid
OrganizationsLocationPeople

article

Influence of Operating and Electrochemical Parameters on PEMFC Performance: A Simulation Study

  • Soomro, Imtiaz Ali
  • Memon, Fida Hussain
  • Khan, Muhammad Ali
  • Mughal, Waqas
  • Ali, Wajid
Abstract

<jats:p>Proton exchange membrane fuel cell, or polymer electrolyte fuel cell, (PEMFC) has received a significant amount of attention for green energy applications due to its low carbon emission and less other toxic pollution capacity. Herein, we develop a three-dimensional (3D) computational fluid dynamic model. The values of temperature, pressure, relative humidity, exchange coefficient, reference current density (RCD), and porosity values of the gas diffusion layer (GDL) were taken from the published literature. The results demonstrate that the performance of the cell is improved by modifying temperature and operating pressure. Current density is shown to degrade with the rising temperature as explored in this study. The findings show that at 353 K, the current density decreases by 28% compared to that at 323 K. In contrast, studies have shown that totally humidified gas passing through the gas channel results in a 10% higher current density yield, and that an evaluation of a 19% higher RCD value results in a similar current density yield.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • polymer
  • Carbon
  • simulation
  • laser emission spectroscopy
  • current density
  • porosity