Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Memon, Fida Hussain

  • Google
  • 2
  • 9
  • 50

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Ultrathin Graphene Oxide-Based Nanocomposite Membranes for Water Purification36citations
  • 2023Influence of Operating and Electrochemical Parameters on PEMFC Performance: A Simulation Study14citations

Places of action

Chart of shared publication
Lim, Jong Hwan
1 / 1 shared
Ibrar, Aliya
1 / 1 shared
Memon, Ayaz Ali
1 / 2 shared
Khan, Muhammad Ali
2 / 8 shared
Iqbal, Muzaffar
1 / 2 shared
Soomro, Faheeda
1 / 1 shared
Soomro, Imtiaz Ali
1 / 1 shared
Mughal, Waqas
1 / 2 shared
Ali, Wajid
1 / 3 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Lim, Jong Hwan
  • Ibrar, Aliya
  • Memon, Ayaz Ali
  • Khan, Muhammad Ali
  • Iqbal, Muzaffar
  • Soomro, Faheeda
  • Soomro, Imtiaz Ali
  • Mughal, Waqas
  • Ali, Wajid
OrganizationsLocationPeople

article

Ultrathin Graphene Oxide-Based Nanocomposite Membranes for Water Purification

  • Memon, Fida Hussain
  • Lim, Jong Hwan
  • Ibrar, Aliya
  • Memon, Ayaz Ali
  • Khan, Muhammad Ali
  • Iqbal, Muzaffar
  • Soomro, Faheeda
Abstract

<jats:p>Two-dimensional graphene oxide (GO)-based lamellar membranes have been widely developed for desalination, water purification, gas separation, and pervaporation. However, membranes with a well-organized multilayer structure and controlled pore size remain a challenge. Herein, an easy and efficient method is used to fabricate MoO2@GO and WO3@GO nanocomposite membranes with controlled structure and interlayer spacing. Such membranes show good separation for salt and heavy metal ions due to the intensive stacking interaction and electrostatic attraction. The as-prepared composite membranes showed high rejection rates (˃70%) toward small metal ions such as sodium (Na+) and magnesium (Mg2+) ions. In addition, both membranes also showed high rejection rates ˃99% for nickel (Ni2+) and lead (Pb2+) ions with good water permeability of 275 ± 10 L m−2 h−1 bar−1. We believe that our fabricated membranes will have a bright future in next generation desalination and water purification membranes.</jats:p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • pore
  • nickel
  • Magnesium
  • Magnesium
  • Sodium
  • permeability
  • two-dimensional