People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Boffa, Vittorio
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Metal-organic framework-intercalated graphene oxide nanofiltration membranes for enhanced treatment of wastewater effluentscitations
- 2024Metal-organic framework-intercalated graphene oxide nanofiltration membranes for enhanced treatment of wastewater effluentscitations
- 2024Metal-organic framework-intercalated graphene oxide nanofiltration membranes for enhanced treatment of wastewater effluentscitations
- 2024A self-cleaning thermocatalytic membrane for bisphenol a abatement and fouling removalcitations
- 2023A Thermocatalytic Ceramic Membrane by Perovskite Incorporation in the Alumina Frameworkcitations
- 2023Thermocatalytic Performance of LaCo1−xNixO3−δ Perovskites in the Degradation of Rhodamine Bcitations
- 2023Beneficial effect of cerium excess on in situ grown Sr0.86Ce0.14FeO3–CeO2 thermocatalysts for the degradation of bisphenol Acitations
- 2023Removal of As(III) via adsorption and photocatalytic oxidation with magnetic Fe-Cu nanocompositescitations
- 2023Beneficial effect of cerium excess on in situ grown Sr 0.86 Ce 0.14 FeO 3 –CeO 2 thermocatalysts for the degradation of bisphenol Acitations
- 2021Ceramic Processing of Silicon Carbide Membranes with the Aid of Aluminum Nitrate Nonahydrate: Preparation, Characterization, and Performancecitations
- 2021Hydrothermal preparation of B–TiO2-graphene oxide ternary nanocomposite, characterization and photocatalytic degradation of bisphenol A under simulated solar irradiationcitations
- 2021Degradation of organic micropollutants in water using a novel thermocatalytic membrane
- 2021A graphene oxide-based nanofiltration membrane for the catalytic abatement of organic pollutants in wastewater
- 2020Enhanced Fabrication of Silicon Carbide Membranes for Wastewater Treatmentcitations
- 2020Enhanced Fabrication of Silicon Carbide Membranes for Wastewater Treatment:From Laboratory to Industrial Scalecitations
- 2018Catalytic activity of doped SrFeO3-δ perovskite-type oxide ceramics for degradation of water pollu-tants
- 2017Mutual-stabilization in chemically bonded graphene oxide–TiO2 heterostructures synthesized by a sol–gel approachcitations
- 2014Deposition of thin ultrafiltration membranes on commercial SiC microfiltration tubescitations
- 2013Toward the effective design of steam-stable silica-based membranescitations
- 2012Development of nanoporous TiO2 and SiC membranes for membrane filtration
- 2009Urban Wastes as Sources of Valuable Chemicals for Sustainable development: Surfactants, dispersing polymers and polyelectrolytes of biological origin
Places of action
Organizations | Location | People |
---|
article
Ceramic Processing of Silicon Carbide Membranes with the Aid of Aluminum Nitrate Nonahydrate: Preparation, Characterization, and Performance
Abstract
<p>The development of a low-cost and environmentally-friendly procedure for the fabrication of silicon carbide (SiC) membranes while achieving good membrane performance is an important goal, but still a big challenge. To address this challenge, herein, a colloidal coating suspension of sub-micron SiC powders was prepared in aqueous media by employing aluminum nitrate nonahydrate as a sintering additive and was used for the deposition of a novel SiC membrane layer onto a SiC tubular support by dip-coating. The sintering temperature influence on the structural morphology was studied. Adding aluminum nitrate nonahydrate reduced the sintering temperature of the as-prepared membrane compared to conventional SiC membrane synthesis. Surface morphology, pore size distribution, crystalline structure, and chemical and mechanical stability of the membrane were characterized. The membrane showed excellent corrosion resistance in acidic and basic medium for 30 days with no significant changes in membrane properties. The pure water permeance of the membrane was measured as 2252 L h-1 m-2 bar-1. Lastly, the final membrane with 0.35 µm mean pore size showed high removal of oil droplets (99.7%) in emulsified oil-in-water with outstanding permeability. Hence, the new SiC membrane is promising for several industrial applications in the field of wastewater treatment.</p>